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II

INTRODUCTIONI
There are in existence many classes introduced in view of extending

the notion of Bessel potentials of L functions (c. f. [2] ; classes Pa dis-

cussed there were introduced earlier but the theory was not published in

extenso).

The most important appear to be the classes often denoted by Lp
a

(Calderon [6]), Wo (introduced by Gagliardo [11] and Slobodecki [14] as' p

the extension of classes Wa introduced by Sobolev for integral values of a)
p

and 15''P (the special case of more general classes introduced by Besov

[5].) 1.

These classes are defined essentially as follows (for precise defini-

tions see §7 of this paper).

LP is the class of all Bessel potentials of LP functions, i.e. of alla
functions u of the form u =G * f, fc Lp, where G is the Bessel kernel

a a

of order a (c.f. ý2). The norm in LP is defined by Dullp 9flh
aa

W , for a > 0 is defined as the class of all functions which together
p

with all derivatives of order z a (in the sense of the theory of distributions)

are in Lp and have finite norm

I?~~ ~~~ ]j,[R ~u R •n1Du(x)-D'uY IP VxY ]p

I 0 un [ D ulPdx + J n i I jn

1. We shall not consider here the classes introduced by Nikolskii [12] as

they are not so closely related to potentials of LP functions. The same

applies to the general classes of Besov.

I
i
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In the latter expression the double integrals are to be omitted for a in-

teger. (For a precise definition of the norm in W see S3.)P

3ap, a > 0, is defined as the class of all functions of LP with the
k

finite norm lul.,pk = (Jujllp + [ 1t-a -ptln dtPPp, k > a.

This expression does not give the standard norm in 1 ap. However,

for all integers k > a the corresponding norms uliap~k are equivalent.

In view of different aspects of the theory, each of these classes has

its advantages and disadvantages. From the point of view of simplicity of

properties the class 93c"p seems to be the most advantageous; the class

is the simplest from the point of view of definition and representations
aa

of its elements. Class W is in most cases in a kind of intermediate posi-
p

tion between the other two; for a not integer and all P, I < P 9 0, W co-
- p

incides with S"a'P, whereas for a integer and I < p < oo, it coincides with

LP. The only cases when Wa has a somewhat independent existence are
a p

p = 1 or p = co and a integer. These are actually the cases when the in-

formation about W a is the least precise. For this reason, if we were in-
p

terested in studying these classes in the whole space Rn, there perhaps

wouldn't be much point in introducing the classes W. This study, however,
p

is conceived as an introduction and help to the investigation of the corres-

ponding spaces on domains of the space Rn (as was done in the case of

Bessel potentials in [3]). In this connection we immediately come across

the question of defining these classes intrinsically for a domain D C Rn.

For WO the answer is immediate. To define Wp( D) it suffices to replace
P p

10 by D in all the integrals occurring in the definition of the norm. Such

definition is justified by an extension theorem asserting the existence of a
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simultaneous linear and bounded extension mapping from W (D) to
Wan~

P(R ) for a rather general class of domains.

As concerns LP there is no intrinsic definition of a corresponding

class in a domain D.

In the case of 13 a" there is an intrinsic definition for a domain D

proposed by Besov in which the integration of the difference is taken only

over the points of D where the difference is defined. However, it is not

known, and probably not true that for a general domain D the different

norms defining 12a,p are equivalent. Even if one of them is chosen, the

presence of the higher difference occurring in the norm makes it very

unwieldy to use it in a domain. In the case of classes Wa we know that
p

2most of the results of the theory of Beasel potentials of L functions can be

extended to WO(D). It is not known and seems difficult to extend these re-

p
sults to the proposed classes 75"P(D). This is the reason why in the

a
present paper we are stressing the study of the classes W .

All the classes under consideration can be considered as completions

of the class C with corresponding norms. The classes LP, W a, q aP
a p

are such completions relative to the class of sets of Lebesgue measure 0.

This approach avoids some essential difficulties, but in some respects

it is rather inconvenient, especially if we want to speak about restric-

tions of these classes to hyperplanes or more general subsets of Rn

Clearly this approach does not allow any insight into pointwise properties

of derivatives of functions of the classes under consideration.

Similarly as was done in the case of Bessel potentials of L functions
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we introduce the perfect functional completions of C with the norms

of IY, VP , y•Ip To distinguish these perfect completions from the
o p

imperfect completions we use the symbols Pa"P for the perfect comple-

tion corresponding to Lp (in analogy to the symbol, Pa for Bessel poten-

a
tials of LZ functions), P'7'P for the perfect completion corresponding to

Wa ( in analogy to Pa for Bessel potentials intrinsically introduced onp

domains) and Bct'p for the perfect completion corresponding to •5p.

aIt is to be noted that for p = 2 all three classes coincide with P

and this is the only exponent for which a single class can be defined com-

bining all the advantages of P'P, P•ap and Ba'p.

All three families of spaces considered here were extensively in-

vestigated by several authors, Besov [5] (see also [12]), Calderon [6],

Gagliardo [11], Slobodesky [14], Stein [7], [8], Taibleson [19] and others, and

many of the results presented in this paper were obtained by them. We

believe, that in addition to some new results which we obtain here, the

most significant contribution made is the introduction of the representa-

tion formulas for the study of the spaces under consideration. The method

appears to have possible applications in the general study of differential

problems.

The basic idea behind the use of repres:entation formulas lies in the

fact that they represent a function as an integral transform (or a linear

combination of such) applied to expressions whose LP norms occur in the

definitions of the spaces under consideration. For example, the represen-

tation formula (c. f. 5 5)

~ m dy)pmc m G iG 2 (x-y)Dju(y)

1. See [12].
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expresses u in terms of all its derivatives of order < r -- the norm in

Wm is defined in terms of LP norms of these derivatives.

We give a general method for obtaining such representation formulas.

They are derived from identities written in terms of Fourier transforms,

where they appear as quite elementary; the translation of these leads to

identities in terms of the original functions, usually in terms of some

special integral transformations. This kind of translation has a well deter-

mined meaning in terms of tempered distributions, but since we are interested

in applying the resulting formulas as bnna fide integral transformations, we

have to use a relatively simple theorem (ý5) giving conditions under which

the formulas so obtained are valid as integral formulas. These considera-

tions in turn necessitate an analysis of the corresponding integral transfor-

mations in order to decide if these transformations are absolutely regular.

In i6 we give criteria for absolute regularity which were already

known for some time to be sufficient (but were not published). Quite recent-

ly E. Gagliardo proved them to be necessary also (in a forthcoming paper).

In the introductory chapter we recall some basic notions and results

of the theory of functional spaces and functional completion ( 1), the de-

finition of the kernel G and some of its properties ( § 2). For functionsa

of C0 we introduce the standard and approximate norms of WO ( 3) and

the norms I 'ap,k of 7•a'p (• 4) and investigate their properties; in

particular we prove the equivalence of norms I app,k with varying k.

The second chapter deals with the imperfect completions. In95 we de-

scribe the formal way of obtaining all our representation formulas (among

these the reproducing formulas and inversion formulas for Bessel poten-
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tials). §6 is to be taken as a brief introduction to the general theory of

integral transformations which leads in particular to the notions of semi-

regular, regular, and absolutely regular transformations and their basic

properties. In 7 we introduce in a precise way the imperfect completion;

in ý 8 we prove the continuity of the standard norm of W considered as
p

a function of a. In §9 we derive various auxiliary inequalities concerning

the kernel G , its derivatives and differences, which are needed in O10

where we consider several integral transformations occurring in our repre-

sentation formulas and analyze them from the point of view of properties

described in §6. Almost all of these transformations turn out to be ab-

solutely regular which allows us to obtain in § 11 all the equalities, isomor-

phisms and inclusions between the different classes. We show in particular

that there is a well-determined space B0' of tempered distributions such

that 73"'p = G B 0 'p for all a > 0. In most cases these results were

obtained by other authors by different methods; we were able to make some

of.them more precise. In §12 our representation formulas are used to re-

present the spaces W a, -f3 ap' as projections in suitably defined LP-spaces

which allows us to prove in a simple way that Wa, Wa, and aP, 73ap'p p
are conjugate in suitable pairings.

Chapter III deals with the perfect completions Pa"P, Pap and Baip.

In t13 we prove their existence, describe their exceptional classes and

show that in almost all cases the representation formulas introduced before

give perfect representations of functions in corresponding perfect completions.

It is shown further that functions in perfect completions have pointwise de-

fined derivatives (for p =-1 the results are somewhat weaker). It is also

shown that for every function in any of the imperfect completions we can
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very easily obtain a corresponding function in the perfect completion by

replacing it by the pointwise limit of its regularizations (corrected func-

tion) and taking as its exceptional set the sets of all points where the limit

does not exist or is infinite. (Here again the. result is less precise for

P,1 a-integer.)

In the last section we prove theorems about restrictions of functions

of our classes to hyperplanes and extensions from hyperplanes to the whole

space. We take advantage of the fact that our representation formulas give

perfect representations of functions in our classes, and consequently the

pointwise restrictions are defined directly by these formulas. The results

of • 10 provide an immediate verification that the restrictions so obtained

are in suitable classes. The extensions are obtained by again making a

suitable use of the representation formulas.
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CHAPTER I. Preliminaries.

• 1. Functional spaces and functional completion.

For the sake of completeness we shall summarize here some results

of the theory of functional spaces and functional completion relevant for this

paper (c.f. [1]).

Let 0Of (exceptional class) be a c-additive and hereditary class of

Ssubsets 
of a set • . A property of points of r is said to hold except OZ

(exc. Ot ) if the set where it fails belongs to 01-

A linear functional class relative to of (rel. M%) is a class • of

complex valued functions defined on F exc. 01- such that for every u,vE

and for every complex number a, u+vc V and au 4E F-. If - = (0), i. e.. 0

contains only the empty set, 2 is called a proper functional class.

The space V of all equivalence classes of elements of a functional

class I exc. (I with the equivalence relation f - g f = g exc. OM is,

of course, a vector space. We shall consider only such functional classes

? that if f E 7 and g f exc. a then g E 5 (saturated classes).

A normed functional class 7 rel. 0ý is a linear functional class

rel. 07- in which there is defined a norm juj ý 0 with the properties:

10 1jul = 0 if and only if u=O exc. 0, 2" aull =jai lull,

3" lull •- Jju-vi +lUvj.

If a class -f is normed then the corresponding vector space V of

the equivalence classes of elements of V is a normed vector space. All

notions relevant in the theory of normed vector spaces (e. g. convergence,

completeness, etc.) may be therefore transferred directly to the class " .

I
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A functional space rel. 0% is a normed functional class rel. a• with

the following functional space property: Every sequence which converges

to 0 in the norm contains a subsequence convergent to 0 pointwise exc. •.

A functional completion of a normed functional class V rel. Ot is

a normed functional class 1 rel. O such that (a) t D4V ; (b) if uc

then u E I and has equal norms in both classes; (c) " is dense in 1(in

norm) ; (d) 1 is complete. There may be no functional completion for

relative to a given exceptional class O% D 0. However, if a functional com-

pletion exists then it is unique.

A functional completion of a normed functional class ?r is perfect

if its exceptional class is contained in the exceptional classes of all functional

completions of 7 . Perfect functional completion is unique if it exists.

The basic problems of the theory of the functional spaces relevant

for this paper are a) to determine when a functional class has a perfect

functional completion, b) to characterize the exceptional class for the per-

fect completion.

As concerns problem a), it is not known whether the existence of

some functional completion implies in general the existence of a perfect func-

tional completion. In applications, however, the existence of a perfect func-

tional completion may be established by means of the following majoration

properties.

A normed functional class -/ with the norm J j is said to have the

global majoration property if there is a constant M > 1 such that for every

function u c 5 there exists a function u' c . such that Iu' 11 S MjuI and

Re u'(x) > Ju(x)j exc. c*. In particular, if M 1, the class is said to have

the strong majoration property.
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Denote by Z the class of sets B C n such that there exists a func-

tion u c d with the property (i) Iu(x)I > 1 for x c B exc. t . For B c X,

we define 6(B) = infiluo for all uE 51-' satisfying the above property (i).

On r- (the class of all enumerable unions of sets from 6-) we

define the capacity of order 1, cl(B) as follows: cl(B) = inf - 6(B , the

infimum being extended. to all sequences {Bkl of sets in ; with B C U Bk.

We have then the following theorem.

THEOREM 1. 1. If the normed functional class - satisfies the

global majoration property and has some functional completion, then it has

a perfect functional completion relative to the exceptional class of all sets

B with cl(B) = 0.

It may happen in applications that the global majoration property does

not hold for the class I itself, but can be proved for another class '71

relative to the same exceptional class £Y and such that it has exactly the

same functional completions as the class • . We use here the following

easily proved theorem.

THEOREM 1. 2. -If 0' •1 0 C of are two normed functional

classes rel. 01 such that:

1° For every f E 90 the norms of f in 0 and -1 coincide

20 For every, fC7 1 , there exists a sequence {If n C 10 such that

lim ifn- f1 =0 and lim fn(x) = f(x) exc. 01.
n --ip-oo n -- coo

Then -4 and 71 have the same functional completions.

The last theorem will be applied in practice by restricting the initial

functional class S to a smaller class '-0 and then by enlarging ';t to a

larger class 1" '1 will have the global majoration property. It will also

V
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have the same functional completions as even though it will not be in

any inclusion relation with 'I

We mention here a useful theorem which is valid also for more

general capacities than c1 .

THEOREM 1. 3. Let Ifni be a Cauchy sequence in the normed
Co

functional class 7- such that 7 jjn~1 -fnj < co, then for every C > 0,
n=l

there exists a set B€ Eo with c](B ) < c such that on •-B the se-

quence ifn(x)1 converges pointwise uniformly.

Let Z be a normed functional class rel. M and D be a subset of •_,

D 4 01. Denote by M(D) the class of all the intersections of sets of 4V- with

D. Then for every u C 7 the restriction u/D is defined exc. &'(D) and the

set of all such restrictions form a linear functional, class "-,(D) rel. M(D).

With the norm defined by IuliD = inf I IuJ, u/D = u'.J the class "'?(D) is

not in general a normed functional class however (c. f. [2]) if 5 is a func-

tional space rel. 0a then so is 7(D); moreover, if -- is complete, then

j(D) is also complete.

The properties of functional spaces described above, with the excep-

tion of the strong majoration property, remain unchanged if the original norm

in a given functional space is replaced by an equivalent norm. This fact will

be useful in further considerations.

We shall consistently denote by J00 the class of sets of Lebeigue

measure 0.

S2. Notations and Bessel kernels.

The following notations will be used consistently, x, y, so... will
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denote the points of the n-dimensional Euclidean space Rn, Ix - yJ the

Euclidean distance of the points x,y, IxJ I jx - 0J, r, i,... points of the

dual space, (6,x) the inner product of the vectors • and x. The symbol Di

for i il, ... will denote the operator 8XJi .J . f. *g

A
will denote the convolution of f and g, f (6) the Fourier transform of f.

For a > 0 the Bessel kernel of order a, Ga(x-y) G (Jx-yj) is

defined by the formula (c. f. [2]): a-n

1 K ]x)Jx{
(. 1) GJx-) = 1-

t tn+a- Z n K-(jxj)Ix
2 1

where K denotes the modified Bessel function of the third kind of order v.

V

The same formula could be also used for a < 0; the resulting function,

however, is not locally integrable around the origin and cannot serve to define

an integral convolution operator. In some considerations it will be convenient

to indicate by Gfn) the Bessel kernel of order a on the space Rn; thus
a

G(n) =,Ga a

The following properties of the kernels G will be'needed in the se-

quel (c. f. [Z]).

The Fourier transform of Ga is given by the formula
S~n

(Z.2) G(C) (1+6 z) /A

The kernel G is an analytic function of x except at x = 0; for x + 0,

a

Ga (x) is an entire function of a. The behavior of G in described by the fol-

lowing formulas (all representations being valid uniformly in a for a in any

fixed bounded interval).

For I 0
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(2.3a) G (x) I a- 1X if a-n-

For n-i <a'<= n, we have

42.3b) G a(x) 1- -a n~xa -n- a-,L) F 0,)

r(Z sinr 12

The last formula gives, in particulir,

(2.30) G~x 1lo +- 0(1)]
1 2 -I W(7 ~) 'XI

For a >n. we have

(23d G1 1X ZX) + O (JXj 2(14)gL
aZ3) Gx n-Z --~ r( )~ lxi

Zn r(O)uinir2 Lr..-)Zn-
if 0 < a - -a :! I{k-i (r an Z

(23) G(x ~ 1 -l) r(- 2,- -r)( 1 X)Z+

2(773I) Ga(X) r=O r!

@in= r [k!r(k+lt C'-) Jjank j k1 +( lo.)

for 2k-i < a-n 2 k+1, k-integer, k > 1.

Hence, for a-n = 2k

(2.3f) Iz~n1 _,fh~~+D){ ~)r (k-.r-)!(lJZ +

2 [log -+o(1)l

k!'

Formulas (2.3a) - ý2.3f) actually give the significant terms of the
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development of G (x) around 0; I y differentiation they give the principal

part of DiGa(x) at 0.

For ]xj 0- o,

a-n-1

(2.4) G•C) a N -m -- Jx]- e-H

2 r F( Z)

It follows that Gac L1 f dl a > 0 ; by (2.2) G(x)dx 1

Formula (2.2) also implies the f '-)wing composition property of the kernel G a

(2.5) G G = G

Ga(x) being a function of j only, define G a(r)-o (GlxJ) with

Ix] r. Then

(2.6) dG (r) &-n

d n+a- r K,+_(r)

and hence G (r) is a decreasinp nction of r.

It will be convenient to i. )duce on the space Rn x Rn the measure

0 < ( < 1 defined by the fc :ula

(2.7) d1(x,y) - I GZn+ZP(X-Y) dxdy

C(n,)u x2 1 4.29(0) Ix-y]n

where (see (2.3)),
r(p3 + n)

(2.8) ". In%3\
--Zn+291 ,n Vn Z7 (n+P)

and C(n,p) is defined by the fori•.a

n+Z

(2.9) C((n, ) sp ,n n=]n+ 20 dz' dz

s nR R (Z ,...,Zn o

where z' denotes the projection 2he point z = (z 1, .. zn) on the hyper-

'A~C c'
L.
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plane zn = 0.

It follows from the assymptotic representations of Ga (c.f. formulas

(2.3) and (2.4)) that for a > !1-, Ga(x) is an LP function. We will need an

estimate for the norm JGI p.

To obtain this estimate we integrate separately over the regions

jxj>I and jxj <_1. We use formula (2.4) for ]xi >1 and for lxi SI

we estimate: Ga(x) <_ K a og ) if n < a n, G(x)

W [l + _(-lfl-n)]_for n<a<n+l and G(x) <:S for a>=n+l. We get

for n- <a<n

(2.10) IG I < [(a-nP-l -B(p+l,._-n for n <a <n+l

K, for a?> n+l.

For o > 0, G (x) is a continuous function on Rn. In some instances

k
we shall need an estimate for the difference quotient a t Gn+0x (X , whereItl°
k
a t denotes the k-th forward difference with initial point x. and increment

teRn, k >= p, p < c. From o2.Z) we have

n ei(•iX)e(9e, t) - k
K n+a(cx) P Yn l + a 1 dt

and hence
1~~~~~ ~ ~~ 1zk n+r)1 ()- ksin 7"--1k ,d

(2.11) t n &tjP (1 +! • lZ.)r-n

< (Ur),n 2ýk-p Y dt !"n 2k-p-n-I B n (.

"R (l+il l2-

1. X. will denote here a constant (which may differ from one formula to another)
depending only on n.
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93. Standard norm. Approximate norms. Classes 7 a,p.

In this section we skall define two norms which arise in coruiec-

tion with the generalization of Bessel potentials (c. f. [2]). For this purpose

we shall need certain properties of covariant tensors.

Let 0) denote the linear space of all covariant tensors of order I

i.e. of all 1-linear complex valued forms AO(v v2 9,... v1 ) defined on the

n-dimensional vector space Rn (of contravariant vectors). In every fixed

coordinate system there is a 1-1 correspondence between tensors A(4 and

n 1-tuples of their components given by the formula AP.(Va .... av) =
i in

P) . v ... v, , where (v, vn) denote the components of the vector
i , .a V

vs , ... 1 and summation from I to n is understood over the repeated

indices.

Let Z denote the surface of the unit sphere in the space Rn, w itsSn

area, and ZP) its 1-th cartesian power; let e = (e19 ... , denote an

arbitrary point of 1M e I P 1, j It,#.. n and de deI... de the

element of volume of E

Define now for A)e 0 and 1 < p < co the standard norm

i~~~ - _T_))p
'• n

and the approximate norm (dependent for p Z: 2 on the choice of the 'system

of coordinates)

(3.1') PA(') p p

For p - co we put as usual JA(1)jo , supiA()(e(1 )1 and jA(1)lq

9... 
(,1ad P0

sup IA(')]Wii
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For any P), B(I), 0) we define the corresponding standard and

approximate scalar products:

(3.2) ()', B(lI) n'- 5 t d1B1)
IA A eE.d))d(

(3.21) (PI), B1 2; P A) B!').
i i

Observe that by the orthogonality relation ed e de n
n i

(where e (l,.... en)') we get from (3.2)

(3.3) (P)l, Bill) -- (Pl), B(1j)1.

We shall now deduce some inequalities between the norms I p and I p

Expanding A(1)(e(1 )) in (3.1) in terms of components, using Hblder
( n n

inequality and the fact that ( •_-1esIP) is a decreasing function of p we
get s1

(3.4) PA()j I _ n'IPJA(01 if p : 2

PA(')J < n Pl/Z)A()i if p => 2

(for p 2, IA(1)12  IA(1 2  by (3.3)).

On the other hand, for every P) c(0) there exists a B(E)cV(4

B14) + 0 and such that (P), B1l),) - JA(')JIp 1B(t)1p.. Taking into account

(3.3), applying H~lder inequality and using (3.4) we finally obtain

n-1/21A(1)lp < JA(')Jp l n'/PIA(P)'p p - 2
(3.5)

n-4/P'IA(1)1 < JA(I')jI n</21A(0) p >- 2

Denote now for any u e Co by V u(x), the (symmetric) tensor of

all derivatives of order I of u at the point x, and define for I < p < co

and a > 0, m [a], / a-m, 0 < 1, the standard norm of u of

order a
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(3.6) 1 ulP . P, IVuxld Jdi±l (X

1=0 R n

If a is an integer, 0 • 0, we omit in (3.6) the double integral (the

measure d L0 = Z) ,
m

]um'P def I= p(g n~ ull d

GO

Similarly, we define for ue C0 , the approximate norm of order a,
m

(3. , p d6f- 0  R R x-yU p

If a is an integer, 0 0, the double integral is to be omitted.

For p = co the norms are given by

(3.7) J max {SUPl U(x),, sup .. ix)L.'° U( }
OSI-s1 X+y jX-y],j O

(u13.7') Jumax= O- {supV'u(x)1o. sup j Lm J
O*s xy, lX-Y l cOD "

When a ---m is an integer, the norms are given by,

(3.8) lulm,oD a s]'UXl ,P

julmO ma ~ supIV'U(X)1~}O'sl-sm x

Clearly, ]ulo,0 c = l 0 U' JluJl

We shall denote by • a . 0, 1 S p S ao the class of all functions

uc CO with the standard norm JuJIp

For p 2, it is easy to verify (using (3.4)) that both of the norms

I 'aZ and J 1 a,2 are equal and coincide with the standard norm in the

space Pa of Bessel potentials. The norm IJ is continuous in a; it will

I
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be proved in the sequel that so is the standard norm lp . The latter

is one of the main reasons for introducing the standard norm (the other

being the independence of the choice of a coordinate system). For techni-

cal reasons, however, in most of the considerations we shall use the ap-

proximate norm I la,p , this being justified by the following inequalities

which are immediate consequences of (3.5):

p a,p- I la,p for p =2,
(3.9) { nyV~jul, lua • alp

~~/P'ju] - JuJ for p 2
rnp la, p Jua,p

We shall now describe some properties of the classes "-a'P which

follow directly from the definition. It is easy to see that 9a'co is a

proper functional space whose perfect completion, in the case when a is

not an integer, is the proper functional space of all functions of C(m)

which are bounded and vanish at co with all their derivatives of order < m.

(C(m' ) denotes the class of all functions in Cm satisfying together with

all derivatives up to order m uniform Htdlder condition with exponent •.)

This space will be denoted by P '00<

For a integer, P l9°<is the space of all the functions u of Ca

vanishing at co together with all derivatives of order < a.

For I < p < oo, rJra'p is a proper normed functional class, but when

a < np , it is not a proper functional space; it is, however, a normed

(incomplete) functional space rel. O0.
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We shall define in this section the normed functional classes 7'P

which, by completion, will lead to the spaces B'p mentioned in the Intro-

i duction.

We shall denote by At the difference operator Atu(x) = U(x~t)-u(x),
k k =t/kt'land by k its k-th power: k= Akt

Define for uEC, k > Oan integer, 0O<a<kandl < p<co,

a~pk ko ~ ~~ ~n~aR tnp

and for p -o

Sitlt
Denote by la~p'kthe class of all functions uc with the norm iUtajp:k.

We shall first prove that if k, k1 > a, then the norms jj "a,p~k

and J, IIP are equivalent.

Lemma 4.1+ Let k, k1 be two integers,O <= a < k • k 1 an__d

and fo p co

1 ~.p Co. Then for every u• C0

2 k-k 1 hull IIk7 2 -1 .1(k1 )hl)

zkk a'•oP'kl -- uapk -= .(1-2 - ) r(k) ~~

• ~~Proo_..f. The first inequality follows immediately from the remarkk -k kk
(hat OAutt)j ma•kdtu(x)] < (p)lu( x+jt).

1t=0

x + 
I I
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To prove the second inequality consider first the case when k, =-k +1.

We use the following simple identity.

N-I
(4.3) At- 1 N •-

^^k-A-lux1 0<I< -,yea(4.3) with N 1 applied to the function a k-t-i 0 < I k- yi, ld

21 2t t 21+1 24 t2t + Lt' ' '
I1 ^1 ^k-1 1 .1+1 .k-1-1 I I ki' +1ux+ S-zt -t 2 ,t "t tl-l s

Adding together the above identities for 1 0, 1, ... k-1, and dividing both

sides of the obtained identity by jt]' we get

k k -k-i I k+l
At u(x) 1 &Ztu(x) - z ? . k Atu(x+. st.)

1=0 s=0 Iti

Taking LP norms of both sides of the last identity, with the measure

dx dt we get, in view of the invariance of these norms under translations in

ItIn

x and homotetic transformations in, t (obvious modification for p o)

k

lluzpk IS k( _ u-kI ug a,pk+l

The result follows now by induction if we observe that

2 kk 1 k(k+l).. . (k1-1) 2  r(k,) 7. 2k-k "r(kl)
OD"k' 1 - (1 -) -k) rk) T - 1) (l-Z)'klrlk)

1=k 1=1

For p = oo, the class f5 is a proper functional space. Its

(perfect) functional completion will-be denoted B 'co. (By Lemma 4. 1,

B l°°is independent of k.) It can be proved that B '°is the proper func-

tional space of all functions u vanishing at wo together with all derivativef

of order <& and satisfying the following properties:
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If a is not an integer, a = mrI, + nm [a], then u is uniformly

m
bounded together with the derivatives __ a U in any fixed direction

e. Moreover, the function of one variable s, 8mu(x+si9) satisfies HSlder
Dem

condition with exponent 0 uniformly with respect to x, 9.

ou •M-1u
If a is an integer t = m, then u, 8,..., r are uniformly

8 em1Mr-1uxse

bounded for all directions 9. Moreover, q(s) as a function

of the single variable s satisfies < M uniformly with respect to

x, 9, s and T.

Observe that for 1 < p < .o, "*c'P is a proper normed functional

class and a functional space rel. MO
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Chapter II. Imperfect completions of 7-1 aP and 7•5'p'k.

5. Some properties of distributions and representation formulas.

We will use the theory of distributions for two purposes: first, to

define in the quickest way imperfect completions of the spaces ,a,

and Zapkrel. M0 (sets of Lebesgue measure 0), and secondly, to establish

different representation formulas (such as inversion formulas, reproducing

formulas, etc.) which will serve as the main tools in our investigations.

The easist way to obtain these formulas is to write them for tempered dis-

tributions in terms of their Fourier transforms; they are obtained then by

standard integration techniques. Then, by applying the inverse Fourier

transforms we obtain the desired formulas in the form of "integral trans-

forms". It remains to be shown that when the distribution is a function of

some class, its integral transform is also a function of a corresponding class,

and that this transform is given by the usual Lebesgue integration, or, in

some cases, by singular integrals.

Unless otherwise stated, all distributions will be tempered distribu-

tions. 1.

We start by a brief review of some facts in the theory of distributions

relevant to our considerations; for details we refer the reader to the mono-

graph by L. Schwartz [13].

As usual, 45 denotes the Frechet space of C functions of rapid de-

crease, and -5' the class of tempered distributions, i.e. linear function-

als on -. bounded relative to one of the norms,

1. Our considerations are still valid for more general classes of distributions,

but the greater generality will not be needed in the present paper.



(5.1) iI (m,k) sup l+ jxJ) JDip(x)j
x

The value of a distribution u for ye 5 will be marked as u(qc), or

5u(x) qp(x) dx.

For 1 < p < o, u is a function in LP(Rn) if and only if Ju(qI)J <

cll l4,, where 1/p + 1/p' = 1. For p -1, this property would only estab-

lish that u is a Borel measure of finite absolute measure. In order to

characterize u as a function in L1, the condition should take the form u(qp) <

6(JKj)cpOL0 where K is the closed support of qp, JKJ the Lebesgue meas-

ure of K, and 6(t) is a non-negative increasing and bounded function of

t > 0, such that lrn 6(t) 0 0.
t"X0

We introduce as usual the derivatives Diu, the differences ku,

and the Fourier transforms u of a distribution u.

In order to avoid any possible misunderstanding, we shall make the

following conventions concerning differences. We shall consider only forward

kdifferences. The symbol A ta;x will denote the difference of order k with

increment t and initial point a, taken with respect to a variable x. In the

kcase when a function preceeded by the symbol Idta;x depends on several

variables, then in the operation of taking the difference, all variables other

than x are treated as parameters. For example, Ata;4u(x, X-y)t) an

u(a+t, a+t-y, t) - u(a, a-y, t). We will use the following abbreviations systema-

tically. If f is a function of a single variable x (where there is no doubt as to

the variable with respect to which the difference is taken) we will write

0 k Ak f) k
ANt, a;x f()=A ,a f~) t,af

We will also write

k k
t,x;x t;X
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if the difference is applied to a function of several variables, and

k k
A f (X) Aft,x;x t

if f is a function of a single variable x.

Concerning mixed differences, we mention only the following evident

relations

Ak Aki k A
t,a;x tla 1 ;xl t11a 1 ;xI t,a;x

if k, t, a, and x are independent of xl, and kl, t1 , a1 , and x1 are independent

of x;

A Ak =k Ak I A& Aktx;x t1 1x;x t;x t• 1 ;x tI;x t;x

if k, t, kI, and tI are independent of x.

A function f in C 0 is of slow increase if there exists a sequence of

integers km such that (l+jxZ)-kj1DiDf is bounded for every derivative Di*

Such functions are multipliers on • i.e. , fepc 9 if cpEE . Therefore the

product f(x)u(x) is again a tempered distribution defined by (fu) ((P) = u(feP).

A multiplication operator by a function fE CG0 of slow increase is a

special case of a linear operator T: S ---- S continuous in the topology of S,

i.e. such that for every norm DJ B(mk) there exists another norm jI U k'

such that JTepgimk _ C11kPiIm-k, with C independent of c but depending

on m,k.

The Fourier transform of u(x)cS will be denoted "-ru = '(•). It is

a continuous isomorphism of S in variable x onto S in variable •.

If a distribution u is a function of C of slow increase then its

Fourier transform is called a distribution of rapid decrease.

It follows that the convolution of a tempered distribution u with a

distribution v of rapid decrease, u * v, is a well defined tempered distribution
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and we have

(5.2) (u*v)^ (2w)'/• ..

We have further

A = (i(tj uA 1 ) (i )(5.3) (D u)^ ... iil(i

(5.4) (u(x))' = (ea>0,

(5.5) (G a(:))" (2 (•-(l +I C{)•, a > 0,

(5.6) DjG (x))A (i+g)-a2, a > 0

It should be noted that D.(G (x)) is a function belonging to L for

Jjj < t. For {jj > a, it should not be considered as a function but as a

distribution -- evern though for x + 0, the derivative in the usual sense exists

and is an analytic function decreasing exponentially at infinity. We denote

this analytic function by D' G (x). It will be used only for IjJ I a. In this

case the distribution derivative D.G (x) for (pe 4 can be written in terms

of a singular integral:

(5.7) yD GDJ(x)q(x)dx Ajcp(O) + lim DxVjG jj(x)((x) dx,

where A. is a constant determined as follows. Denote by j (k) k= ' ... , n,

the number of differentiations with respect to xk in Dj ; thus Jjj

J(1)+... +J(n)" Then we have

A •- 0 if at least one of the J(k) is odd,

j~)+ ~(n) is dd(5.7') jlj+
j z.l.iljh/2 r(---z--... are ven

A = r!L-)n. r(n if all the J are even.

1. Since we use the traditional definition of Fourier transforms, we have (2f}D/Z
as constant in the formula -- which does not appear with the conventions used
by L. Schwartz (13].
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Let Tt be a linear operator Tt: - v depending on a parameter t

varying over some measure space 'X. We assume that Tt is continuous in

3for almost every te ". Then for almost every te Zr the operator

(5.8) (T•'u)((p) = u(Tt(q'def

is well defined and T* :'-- Under the Fourier transform, Tt and T*
t t t

give rise to the operators
A -

(5.9) Tt = Tt , •t t -

and for every pe 5 and ucEt

(5.10) (Ttcp)" Tt~ p ---* T u.

We will deal with operators of the form

(5.11) Tqp Ttcpdt CPC

and correspondingly

'(5.12) T*u Ttu dt uE.'

the last expression being defined by

(5.13) (T*u)(q)) = u(Tcp)

The following assumptions will be made

(A) For every cpcZ the integral STtcp(x) dt exists as a Lebesgue

integral for every x and represents a function of 3 . Moreover, the opera-

tor (5.11) defined by the formula (Tcp)(x) - Ttq (x) dt is continuous on

(B) For every qpc c5 the integral Y) Ttcp(x)] dt exists for almost all

x and as a function of x belongs to L (R n LO!(Rn).

By virtue of hypotheses (A) and (E) we have the formula

A A A A d(5.14) T q)(4) --- tTtcp() dt ,for everyr qpc J.



29.

The following statement holds.

THEOREM 5.1. Let u4 Lp for some 1 < p < co and assume that

T~ucZ •satisfies the following conditions:
t

(5.15) T*u is a function for almost every t

t(5.16) •J ~Tt~(x)j dt exists in Lebesgue sense for almost every x

and as function of x is locally integrable.

Then T*u as defined by (5.13) is a function and

(5.17) T*u(x) T *u(x) dt

almost everywhere.

By our assumption 5 T'u(x) dt is a function and the only thing to

prove is that it is equal to T*u. as defined by (5.13). In fact if qpe Co, then

in view of (B), (5.16) and Fubini's theorem,

S Tu~x dt) cp(x) dx = [ u(x) Tt(q(xý) dx] dt T* c)
RT T" R

/ We shall now proceed according to the following scheme. In terms of

Fourier transforms we will write identities which can be proved by standard
A ('A .A

methods in the form T - Tt dt. Tt will be multiplication operators by func-

OD A
tions of C° of slow increase and the same will be true of T. The same func-

A * A
tions will give us the operators Tt and T* acting on c, 1. We will then know

explicitly the operators T* and T* as convolution operators; in most cases
t

T* will be a convolution with a function of rapid decrease, at worst it will be
t

a singular integral convolution operator. In every case the verification of

conditions (A) and (B) will be immediate. The verification of assumptions

(5.15) and (5.16) of our theorem will obviously depend on the function u and

we will have to rely on results of forthcoming sections on integral transforma-

tions and inequalities to check on the validity of these assumptions for u
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belonging to different classes of functions in which we are interested.

The formulas we list below are valid under the tacit assumption

that (5.15) and (5.16) hold.

The variables t, g are n-dimensional vectors, t0 is real, k is a

positive integer, 0 < P < k. Consider the expression

:y y eito+ilt,g _lj dt dk
(5.18) Skn,()- ,.i 2  dt dt0

-oD Rn(t +Jt Z) -

C D jIeito° I t2 k d n dt l ( 1+ P,-)
to• tn0 l +lt l---

(i) k+l C(n+1,0) 2k+
-- -- 2 &1, -k;s s Z 1+J .}

On the other hand

Ikn - [etQ ([e(tI )-l)(it°)nk e [eito (e7 (t. Ll) + (eaitoll)k'at dt-cR (to2 +It]?,-)--z-

k= Co k k~)' ei(1-1l)tOteittOl)k-1(e-to.1 k- 1(et(t,{).l)1(e-i(t,{)_l)I1

- R 2
dt 0 dt+(t 0 5 + ,]

kS• k k X-)k-1, .Zk-,-I 21, G(I) (it)'le't•)l dt
= S ,(k)(k•)(-)~ ~kPlZ~1) { ( l e d

Rn 01L It ,(I -k)jtj n+l+z2, t 8n÷A

The last expression is obtained by integration with respect to to. (For

a similar reasoning, see [2 ].)
Changing the kernel G(1ý,÷Z)•_ to an n-dimensional kernel, we obtain

finally
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k(519 1 kt(-t2n (el(tI •)~l)le i(tD e))I dt

(5.19) I---- 1 (k)(k)(l,)k-ll(,k-1-11 GL•=O~l•llII'' 6't,lI-klt 2~n+PllIllI•Z r

where

(5.20) Ck(n,) 2 G- n+1 (O) C(n,A) Akl, k;s sI

Of the three factors depending on 0 in (5.20), the first is a positive

decreasing function of P for all / > 0. The second has simple poles for in-

tegers / > 0 and no zeros on the positive P-axis, The third is an entire func-

tion and has only simple zeros on the interval 0 = f < k at integers 0, 0 <

< k. The resulting product Ck(n,A) is therefore, for 0 < • < k, a strictly

positive analytic function with simple poles at 0 and k.

If we consider the integrand in (5.19) as an operator of multiplication
A A
Tt, thus T I, we obtain by inverse Fourier transform the reproducing

formula

k 2k

(5.21) u Tn k )1 G ('4u) dt

Multiplication of both sides of the identity (5.19) by (1÷gZ)a12'

0 < a _ •, leads to an inversion formula for the operator Ga.0 We denote the

inverse operator of Ga by Ca , and we get

(5.22) G_ u =
1 k P 1hG

(k)(kX_-l t,(-k)t 2n+2 t G) dt
(A11=o 1 (A u)* d

Especially simple and interesting is the case when k 1. Then for

0 < < 1:
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(5.23) (1 1t+¢ G)n+2 ~tt)'l dt(1+l16l "•,•Zn+20(O• W,~ Jtjn+?-I xl~

which can be transformed into the reproducing formula

(5.24) u = G * u + 1 n.ZnG+(t)) 5 tGt G2(t ) *(Atu) dt.

Formula (5.24) can also be written in the form

•nn[G 2 9(z'x) -GJ(Z-y)][u(x) -u(7)]I

(5.25) u(z) = G 2 * u(Z) + 5x-yjzP d0(x~y).

The corresponding inversion formula for 0 < a _ • < 1 is

( G (z [G 20-a (z-x)-G 2 0_C(z-y) ]fu(x) -u(y)]

Rn. 26) G J~)=G0 ()+ýYX-YJ dpt,(x,y).

Multiplying (5.23) by 1 z (m) 2;m 1---0 ( 1

I i = 0 =
where m is an integer, m > 0 and transforming the result we get, with

a =m+

and the correspsnd.•g inversion formula for Ty <_ a ---= 4•

m

(5.27) u() I-- q() YT .D(x)G 2C (z-x) D u(x) dx +

+• J I , o-)G , .. , (zx) -DY) -, ,y..,)][D uMx-Dju(y)] d,,xy,

Jx-yf'
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At the end we include the case when a = m is an integer. From

the identity 1 = I )Iz (-l),(i6)j (i6)j mentioned before

(l+IglJm 1=0 I =

we then get the following reproducing formula

(5.29) u(z) = I Y $ ) G (z-x)D u(x) dxD

1=0 jjj=1 Rn

and the corresponding inversion formula

(5.30) GmU(Z) -- 171 D x) Gm(z-x) Dju(x) dx .

1=0 J=I

In the last formula the integrals corresponding to the values j] m are

understood as singular integrals as explained by formula (5.7).

§ 6. Regular and singular integral transformations.

The purpose of this section is to introduce a terminology concerning

integral transformations which will be used throughout this paper.

Let tX,pL4, tY,vj be measure spaces; denote LP(X) = LP(X,.L)

LP(Y) = Lp(YY). 1. u and v will generically denote measurable functions

in X and Y respectively. Let K(x,y) be a complex valued function defined

on X x Y measurable in X x Y. K(xy) gives rise to a formal integral

transformation defined by the formula

(6.1) v(y) Ku(y) = K(xy) u(x) dp.(x)

X

It is defined for all u for which the integral (6.1) exists in Lebesgue sense

and is finite for almost all y. Denote byMK the set of all such u. We say

that for U"eK the formal integral transformation K is properly defined.

1. All measures will be assumed to be a-finite.
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An integral transformation K (or kernel K(xy) ) is p-seml-re•u-

far (p-s. r.) if the subspace •K N LP(x) is dense in LP(x) and is trans-

formed boundedIy into LP(Y), i.e. that there is a constant Mp - the p-
Mp LPlx)

bound of K - such that UKUULp(y) <_ Hu•

A p-s. r. operator K can be extended by continuity to a unique

bounded transformation Kp on the whole of LP(x), Kp(LP(x))C LP(Y).

K will be called the p-extension of K.
P

The transformation (or kernel) is p-regular (p-r.) if LP(x)C•K

and K(LP(X))• LP(Y). For p-regularity of K it is necessary and suffi-

cient that

I÷I

Y X

for any u• LP(x), vc LP'(Y), the integrals being taken in the indicated

order, G being a constant independent of u and v. The smallest such

constant C is ----Mp. p-•egularity implies p-semi-regularity. K is p-

absolutely-regular (p. ab. r.) if Ii(xy)] is regular. This Is equivalent

to the property

XxY
pl

for any u•LP(X), ve L (Y). Obviously, absolute regularity implies regu-

larity. Or, the other hand, for non-negatlve kernels, p-absolute regularity

is equivalent to p-semi-regularity.

Ifakernel Kis p-s.r, or p-ab.r, for all p, 1 • p < co, we callit

aemiregular, regular, or absolutely regular, respectively.

We have the following theorem.
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THEOREM 6. 1. If the transformation 3K(x~y)u(x)dp.(x) is p-ab. r

then the adjoint transformation 5K(x,y)v(y)dv(y) is pl-ab. r.

The proof is immediate by (6.3).

THEOREM 6. 2. Let K be a p-ab. r. transformation of LP(Xdp.)

into LP(Y,dv) and M be the p-bound of JK(x,y)J. Consider, moreover,

the measures dlil(x) - cp(x)d•l(x) and dv,(y) = 4(y)dv(y) where and

are measurable non-negative functions on X and Y respectively, satisfy-

ing cp(x) < A and ý(y) <_ B. Then K is p-ab.r. from LP(X,d.I 1 ) to

LP(Y,dvl) with bound not exceeding M AlP B

Proof. Observe that for ulE LP(X,dp.I), vle LP'(Y,dvl) we have

B qP1/PU1J BjUIE and 11 +l/p' I V, 9 1, 0(~d]lPu]LP(X,d•t)= ULP(X,dýLl) an ]b/lLP(,Y,dv) -- LrlY'dv 1

Hence for u1 cLP(X,dpil), V, eLP'(Y,dv1 ) we have

jiK(x,yj jul(x) ljlv(y)jdp.l(x)dvl(y) -

XxY

S_ K(x, y)] cp(x9P q(y9 P ul¢(x)J c(x& I vl(x) I +(y) d~4x) dv(
XxY

XxY < M AV/p' B1k u~l lLp(x'd%,) ll V .LP'I (Ydv 1 )

We are mainly interested in regular integral transforms since we

need a pointwise representation of v(y) by the integral (6.1) for all ucLP(X).

There are no known direct properties of the kernel K(x,y) characterizing

its p-regularity. For p-ab. r. such properties are well known in the two

extreme cases p 1 and p -o:

(6.4) K is 1-ab. r.-•= IK(x,y)jdv(y) <A const. < oo a.e. in x.

(6.4') K is oo-ab. r.••JK(x,y)jdg(x) _ B const. < coa.e. in y.
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For other values of p the next theorem gives sufficient conditions

for p-ab. r. . Quite recently these conditions were proved by E. Gagliardo

to be also necessary.

THEOREM 6.3. Let I < p < co and assume that there exist two

non-negative measurable kernels K1 and K, such that

(6.5) IK(x,y)) g Kl(x,y)]/PK 2(xy)VP'

and

YKl(xy)dv(y) < A a.e. dCL

(6.6) Y

"K?(x,y)d•i(x) < B a.e. dv
X

Then K is a p-ab, r. with bound not exceeding A1/p B!/p'.

Proof. For uc LP(X) and v LP'(Y), by applying (6.5), Hdlder in-

equality and (6.6), we get

S Siu~x)i IK(x,y)i Iv(y)Idii(x)dv(y)

< 5 $u~x)i PK(x,y)dli4x)dv(y) I S$Kpx~y) I v(y) jP'd4±(x)dv(y)
XY XY

A1_ • •Bl Dull .p LP ., •

Depending on the nature of the kernel K there are several methods

by which we may find kernels K1 and K. that show K to be p-ab. r.. We

describe two of these methods which will be used in the sequel.

METHOD I. We find two measurable functions q)(x) and '(y), a.e.

positive and finite, and put

(6.7) Kl(x.y) =K(x,y)j+(y) /q(x)P/, Kl(xy) = jK(x.y)jqp(x)/ (y)PYp`

The functions cp(x) and *(y) will be called factors. (6.6) now translates
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into the following conditions for the factors:

y x
Remark 1. The result of E. Gagliardo'mentioned before states that

the existence of factors cp(x) and $(x) satisfying (6.8) is also necessary in

order that K be p-absolutely regular. More precisely, it is proved that

if K is absolutely regular and M is the p-bound of JK(x,y)] it is possible

*to find cpc LP(X) and 4iE LP(Y) such that (6.8) is satisfied with A B =M+c

for any c > 0.

METHOD UI. We find a representation of K(x,y) as a composition

of two kernels 4ý (x, z) and *I(z,y)

(6.9) K(x. y) (D(x,z)*(z,y)dwa(z)

z
where Z is a measure space with measure dw (z). We find further an "inner

factor" X (z), 0 < X (z) < co a. e. such that

K1(x,y) = ,kj (x,z)])L(z)PJ4,(z,y)Jdw(z) < co a. e. in x,y,

(6.10)- Z

K2 (X#y) = Y I(x,z)jX~z)7P'JI,(z,y)Jdio(z) < oo a.e. in x,y.

z

Thus (6.5) is satisfied. The conditions (6.6) now take the form

$Y $j(x,z)JX,(z)PI*(z,y)jdw(z)dv(y) :iA a.e. inx

(6.11) Y Z

I3 b(x, Z)JX(zf P J *(z, y)1 dw(z)d.±(x) < B a.ea. in y
,xz

It is possible to combine the two methods as well as to devise

others adapted to special kinds of kernels.
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In most cases we will deal with p-absolutely regular kernels. In

a few cases, however, we will meet with p-semi-regular kernels; it is

therefore of interest to give some information about them. We start with

some general remarks.

The subspace ý9 K of measurable functions u(x) for which the inte-

gral transform (Ku)(y) is properly defined has the property that with each

u(x) it contains all functions ul(x) majorated by u, i.e. such that Iul(x)i <

lux) a. e.

By a simple measure-theoretic argument one proves that there

exists a measurable set AMC X, unique up to sets of measure 0, which is

the largest among all those sets on which all functions uEPK vanish a.e.

If A = X we may say that K is singular (such are, for instance, the singu-

lar operators of Calderon-Zygmund type); in this case 9K reduces to the

function 0. If pi(X-A) > 0, but also 4(A) > 0 we may call K partly-singu-

lar; in this case, if we restrict X to A, the transformation becomes com-

pletely singular. Of interest here is the case 4(A) - 0, i. e. essentially
1.

A 0; in this case we call K non-singular. A p-semi-regular kernel is

certainly non-singular.

The same argument which leads to the existence of the set A shows

that for a non-singular K there exists a sequence of measurable sets Bi

i = 1, 2,... such that

(6.12) BiCBi+ICX, p.(Bi) < 0, 4i(X-U Bi) = 0,
1

the characteristic function of each Bi belongs to UK.

A simple function is a measurable function taking only a finite number

of values and vanishing outside of a set of finite measure. For every func-

tion u(x), measurable and finite a. e. a classical standard procedure allows

1. The same terminology is used in [21] in a different meaning.
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to construct a sequence of simple functions uj(x) such that lir uj(x) = u(x)

and Iuj(x)I < Ju(x)J a. e.. These functions can be chosen so that each uj(x)

vanishes outside some Bi, and hence so that each ujC9K. In addition, if

ueLP(X) for some p < co, then l0m.u-ujo 0.

Denote by ,k the class of all simple functions in The last re-

mark leads to the following statements.

THEOREM 6.4. A non-singular K is p-semi-regular for p < co if

and only if K(k)C LP(Y) and jKuD MJpuy for uP( Ki
-9k LP(Y) LP(X) k

p-regular if in addition, LP(X) C 9 K

In fact, the above remark shows that P9 C19K n LP(X) is dense in

LP(X) and the continuous extension of K from 9 to LP(X) coincides with

K on OK n LP(X) since (Ku.)(y) converges by dominated convergence to

(Ku)(y) for every Y where S]K(x,y)] ]u(x)Jdli(x) < co.

THEOREM 6.4'. A non-singular K is oo-semi-regular if and only if

the characteristic function X of X belongs to •1K' K(Ok) C Loc(Y) and

IKUH Los(y)`< MIUjjLP(x) fo_..-r ueE)k. The co-regularity is equivalent to

co-semi-regularity.

In fact, if L'(X) n 9K is dense in L00(X), there must be a u0C9K

with I X-U OI~o)< T hence Iu0(x)j > Za.e. and X'EK. On the other

hand X E9K implies Lco(X)C 9K (hence the last part of the theorem) and

the boundedness of K on LPo(X) follows by dominated convergence:

(Ku )(y) (Ku)(y) a. e. in y, J(Kuj)(y)I S Msupluj(x)J MsupJu(x),

hence sup](Ku)(y)J _ Msuplu(x)J.
y x
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Remark 2. In Theorems 6.4 and 6.4', the class Ok can be replaced

by other subspaces of OK n LP(X) as long as for each UE.SK r) LP(X) they

contain a sequence u. converging pointwise a. e. to u, are dominated by

some uEPK, and such that Uuj 1Lp(x) < c, c depending on u but not on j.

For instance, we may take the class of simple functions vanishing outside

of some of the sets Bi (i varying with the function). Another instance of

such a change may be of interest if X and Y are euclidean spaces where

we would like to replace simple functions by COR-functions. This is possible0

if the sets Bi can be chosen to be open.

We turn now to interpolation theorems - the Riesz-Thorin convexity

theorem [20].

Let 1 < P, co, 1 < p? <o, 0 < e{l 1, I/q -= (l-19)/p, + 9/p 2

so that p, =q 0 , PZ ql.

THEOREM 6.5. Let K be non-singular. If K -semi-regular

(or Pi-r., or pi-ab. -r.) for i 1, 2, then K is q -semi-regular (or q,9 -r.,

orq9-ab. -r.) for 0 < e. < 1. The q -bound M satisfies M <,i_9 e
-_-ae q 6  ql6 P1 P2

Proof. 1. Semi-regularity. By Theorems 6.4 and 6.4' the question

reduces to the boundedness on the subspace of simple functions ,9 hence

Thorin's proof applies.

. Regularity. Since (X)CL(x)+ L (X), the result

follows from semi-regularity.

3. Absolute Regularity. Use 1* for JK(x,y)] and then the

fact that for positive kernels ab. -r. is equivalent to s. -r.. If pi-ab. -r.

is established by the kernels KIi and K 2 , satisfying (6.5) and (6.6) then

qe-ab. -r. can be established in similar fashion by kernels
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Kl K(l-e)qo/p"Kozq 6/P2 KZ =K (1-e)q/p'1KeI•/p'2
-I Hg 12 - 1 22

Remark 3. The extension of the convexity theorem, due to E. M.

Stein (see [15] and [16 ]), to the case when not only the exponents of the

LP-classes but also the measures p. and v vary suitably, leads to a simi-

lar extension of Theorem 6.5. The proof applies without changes if one

notices that if K is non-singular rel. p. and v then so is the kernel

cp(x)K(x,y)•p(y) (yp and J finite a. e.) rel. to any two measures ý1' and v'

equivalent to p. and v respectively.

Remark 4. The notions introduced in this section could easily be

extended to integral transforms from LP(X) to Lq(Y) with q + p and even

(under suitable restrictions) to transforms between two Banach spaces of

measurable functions. However, there are no known characterizations of

p,q-ab. -regularity of the kind as given in Theorem 6.3 or in the first

method for the case p = q.

Remark 5. The terminology we introduced above has not been used

before. The notions, however - without being specifically named - were

investigated long ago in many special cases. The distinction between semi-

regularity and regularity was not so sharply drawn. The p-absolute regu-

larity, especially the first method, was very extensively used as a tool to

establish regularity in many special instances (see Hardy, Littlewood,

Polya [10], Ch. I X). The criterion of the first method was not put in the

general form (6.7), (6.8), but rather in a form adapted to the special cases.

As mentioned before, we deal with integral transforms in this paper

which in most cases are p-ab. r., or at least p-s. r. . In a few cases, how-

ever, we meet with a special type of singular integral operator. The per-
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tinent theorems are special instances of theorems of Calderon-Zygmund

[7.
We consider kernels of the form DVG (-y), IJI=m (see §5, es-

j m(Y'jjmse5

pecially between (5.6) and (5.7)). The following statement holds:

If uC LP(Rn), 1 < p < o0, then the limit

(6.13) v(y) = lira D' Gm (x-y)u(x) dx

exists and is finite for almost all y and (6.13) is a bounded transformation

of LP into Lp.

The statement does not hold for p 1 or p = co. Hence, whenever we

have to use singular integrals our results will be restricted to 1 < p < 0o.

67. The imperfect completions P, 6'p.

The norms IuIOp , Ju1 3,p, 0 < 1 < I introduced in 93 have obvious-

ly a meaning for any measurable function u (they may be infinite). Let

1< p < co, 0 < a =m+1, m =[a], 0 3< 1.

We denote by Wa the class of all functions uE LP(Rn) such that
p

1. all the distribution derivatives Dju, J n are functions,

2. ID uI1 ,p < j. 0 il < m.
It is clear that for uc Wc' both norms JulJ.p and Jul, as given

p a~ ,p

by formulas (3.6) and (3.6') have a meaning and are finite. Also the rela-

tions (3.9) hold.

By standard arguments, similar to those in the proof of completeness

of LP spaces, one shows that Wc is a complete functional space rel.0
p

(the class of sets of Lebesgue measure 0). Also a standard argument by
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regularization 1. shows that 1 "'P is dense in W * Hence we have

the following

THEOREM 7.1. Wa is a functional completion of 7 alp rel. a0 .
p

For p - m, we define W as the class of all functions u which together
00

with all distribution derivatives of order <a belong to L and, if a is not an

integer, satisfy Hblder conditions with exponent P. Itis clear that 3 o is

contained but not dense in Wa. One shows immediately that each equivalence
0D

class of Wa rel. Ot contains one and only one function which is continuous
0O 0

and bounded with all its derivatives of orders <a all of these derivatives sa-

tisfying a uniform Hilder condition with exponent a -a*, a* being the largest

integer <a. All such functions form a proper functional space Pa 0 0 C Wa
00

with the norm of Wa. The space Pa00<(the proper functional completion ofOD
aOD a,00

o introduced in g3) is a closed proper subspace of .

1. By regularization we obtain functions u converging to u pointwise almost
P

everywhere and in LR-norm as p -.- 0. Since (D u) = D u for any regulari-

zation, it is sufficient to prove the statement for 0 < am = < 1. Then

JUp-u*lUp •u-ujP p C(n- )Gl Pn +tj1'n+•' Jtup - AtuJiPP dt.

The integrand in the latter expression is dominated by GPn+Z (t)t 2pJAtuP

and for fixed t converges to 0 with p \ 0. Taking now a function qcc C0

whichis =1 for jx] gI, one proves that for fcC 0 0 with jfj],p < Co,

jf(x)-*$px)f(x)pp -- o- 0 as p'-* 0. Double integrals in approximate norms

are handled in a completely similar way as in the case of Bessel potentials

in [3].
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We define now 'a0P as the class of all functions uc LP(Rn) such that

for some integer k > a the norm

B k
(7.1) = Bultln+pa dt

L Rn It] P
is finite.

The argument used in g4 to prove that for two integers k, k1 > a,

the norms I iapk ],,pk are equivalent is still valid in this more

general setting, with constants as in Lemma 4.1, which justifies the omission

of the index k in the symbol 16'p

Using again the standard argument, we have

THEOREM 7. 2. 'r5 a'P is the functional completion rel. Gt0 of the

clas,__ _s apk

Similarly as in the case of P a,o we define the proper functional

space B a, O of all continuous functions with finite norm ] apk* Ex-

cept for vanishing at oo, the functions of Ba,OD have the same properties

a, O <as those of B

Let us add the following statement. If a < a' then there is a con-

stant C independent of u such that for every u

7.2) ula,p,k - Clula,p,k,

To prove (7.2) we may restrict ourselves to the case when k = k'.

Then the integral in the norm ipa.pk can be decomposed into two parts:

integration over It] :_ I and tJ >. 1. The first part is majorated by the

corresponding integral in 'a p the second by a constant times Jul p

It follows that

(7.3) 7b '' D7/B'Dp for a < a'
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S8. Behavior of the standard norm.

The purpose of this section is to describe the behavior of the standard

norm Julllp for a fixed function u and a varying between two consecutive

integers.

Before stating the main theorem of this section we introduce the space

W1>, 0 m > 0 (m an integer) of all functions of wm1 . all of whose deriva-

tives of order m are signed Borel measures of finite absolute mass. In

the definition of the norm Jujml (see (3.6)) the integral involving the deriva-

tive of u of order m is to be replaced by

(.)S (x)j de()
nm Rn

inu

where m .

We shall prove the following theorem:

THEOREM 8.1. Let 1 < p < co and m > 0 be an integer.

i) If wi then lim Jul exists, possibly =+ 0o.
p af m+1 ap

ii) If 1<p< co, then lira Ju < o if and onlyif ucW p+

Sm+1fm~
if uc Wi+l then lim I u I mlpJ"

iii) lirn uujl <o if and only if uc Wm+ ; if uc W m+1 then
1~ m1> 1>

iv) If 1 <p < o, and ucW 0 , a > m, then 11m Jl. ep

Sv) r Jujao <co, if and only if ue P if 'coi
iaf ml"+1 --

then lir lul:a, u z= Ul ,,.
uajr m+l
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Proof. It follows from the definition of the standard norm j a,p

that it is suffficient to consider the case when m = 0. Assume first that

1 < p < co. For 0 < < 1 the standard norm may be written in the form

(8.2) Rn Rn

lujJ + 1 C G2n+2 03(t)
LP C(njJ)G2 n+2 0j(n) Rn TZ t .p

The expression (8.2) has a meaning (it may be infinite) for every uc Lp.

Observe that for 13/ 1 (see (2.9))

I 1 2n
(8.3) 0 ( -P --

n

Rewrite now the integral in (8.Z) for uELP, in the form

G 5 Gn+z2(t) 9 tujjpL dt
R n LtPn+PtL

(8.4) G2 n+2 9(t) 0 ull pdt

SClnf3)Gzn+2 1 (O) 24i 1t~n+p20 ) p

Cn I I On+() tUULp dt = I'(u) + I1(u)C(nPlG 2n-120(0) It, ljnupý

A simple computation yields

2P j~ dt 2izp' ln

(8.5) 11(u) < " un I 1 _In+pf C(nf-)p1 L•

and by (8.3)

(8.6) IN(u) - o for / ,, 1.

According to (8.6), to investigate the behavior of Iui1,p as 1/ 1,

it is sufficient to determine the behavior of IO(u) as O 1.

Define now
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p
(8.7) 1 (u) =P i'lt'IY d

Clearly, Io(u) is well defined for all u cLP; moreover, we have with
G MG(l) (1)

A in GZn+ZP(t) min Gn+1+ 0(

ItI• V Gz0+z(0) 0o e l+(0
0<0<1 2+0n12

(8.8) An I(u) _ Y(u) < Ig(u)

and therefore I.(u) is finite if and only if Iý(u) is finite.

On the other hand, if' ue W with 0 < 0 < 1, (1- 0o)p < 1 (and con-
p

sequently Ip(u) <.oo) we can write for 0 => g0

C(n,pO) G nZ(0)_ G W2•t

(8.9) (u)-I,(u)J• G(n,1 0)G max 2n+20 2 n+2 P (u)
Zn+2gTIj tjPS I g

Gzn+Zp (0)_G 2 z 13 •(t)
and since (c. f. (2.10)) is bounded uniformly withJtJ
respect to t and 9, go <- _ 1, we get by (8.3)

(8.10) II0(u)_Z-I(u)I 0 for 9 / 1

Ip(u) can now be represented in the form

1

(8.11) 1p(u) 1 1 Sl p . q(s, 1) do dO
2 0

where

(8.12). ]ls.

Since JAsUlLp s -<UAs U]I we get

(8.13) cp(s,e) <s cp(je) 1.

for every s.

1. The idea of introducing the function cp(se) and using the inequality (8.13)

is due to E. Gagliardo.
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Rewrite (8.11) in the form

, •) 1 q d(s,O) d

1

m=O

In view of (8.13) the sequence jcp(zms'Oe)} is non-decreasing for

every a and e, therefore applying summation by parts 1. to the series

under the sign of the last integral, we get

(8.14) 1 0 (u) r

1 1 z(m+l)(' 3 -1)P[(2z-m-ls,e)-(-t$ m se)]Cln"p) (1- Z(81p 1 )2 TM m=O 0

+ p(se)?. ds dO.

In view of (8.3) we have 
J

(8.15) lim 2 n 1
•/1C(n,,8)(1-2.('-)p-) Un - T-n

On the other hand the integrand in (8.14) is an increasing function of

•, 0 •< 1 and taking into account (8.10), i) follows.

To prove ii), assume that I < p < co and lim juJp1  < co. Then in

view of (8.10) there exists a positive constant M and a set E C E of posi-
M

tive measure such that

(8.16) S 1 zm(m+l)(1-)P[c(z-m-s,e)--cp2(-ms,e)] s,e ds < Msl+(•-lp 0

for all ecE.M and 3 < 1. Invoking now the definition of (8.12) we conclude

1. More explicitly we use the following version of the Abel formula: If

a >b h >0 , abm -non-decreasing,mEOb m < co, then E abm =
m= 0 m= 0

OD OD
a0 a0 + E (am+l'am)am+l with s - E bi

Sm.0
maO m. .lfin
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that for almost every sE[(/Z,l] and ecEM the norms areM 2_ m ILpar

uniformly bounded. By reflexivity of the space LP(Rn) (1 < p < cx) there

exists an increasing sequence of positive integers mk and a function
pn Az-.kse

n t4w u0 weakly in Lp. By a standard

reasoning in the theory of distributions we conclude that u . Choosing

1"... E zM as any system of linearly independent vectors, we conclude

that Wu ..... cLP and consequently uEW Conversely, if uE W
NU~ p p

n1
then applying the Minkowski inequality and Fatou's lemma, we get

lim 0 .p -- ]1 ,0lll and consequently, taking into account (8.10) and

the fact that as j3, 1 the integral in (8.16) converges increasingly to

log 2 lim I 2:g we get lim I (u) n le ]Lp I de. This com-
m-o 2 -ms "LP /1 plW n L

pletes the proof of ii).

To prove iii) we use a similar reasoning as in the proof of ii).

Assume first that lira Jul,,, < co. As in the proof of ii) we conclude that0/ 1A ufor some sequence Sn, O and ecz€mthe norms 1] 5- ill1, are uni-
fornsomenseqthecnorms n L

formly bounded. By the theorem about vague convergence of Borel signed

measures with absolute total mass finite, we can find a subsequence {S'C

ISnl and a measure dle with absolute total mass a <lim inf j One LI

such that dx converges vaguely to dkte. Using again a standard
n

ou
reasoning from the theory of distributions we conclude that = -, and

Bu

consequently for every e4EEMP o is a signed Borel measure with total

absolute mass finite. Therefore uE W11>

Assume now that uc Wi> Then, for every e, lei =i,

1. See [10], Prop. (203).
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Su(x+se)-u(x) =L(x), where •0(x) is a signed Borel measure with
B -0 Sx e)
total absolute mass finite, the limit being understood as a vague limit.

Introduce the system of coordinate axes such that the xn -axis coin-

cides with e. Then dcl.e is a Borel measure of the form dxldvx (xn) where

the measures dv (xn) are of finite total absolute mass on the xn-axis for al-

most all x' and such that JIvJ = Indl~x'idx'. dv%, is the distribution

derivative of the function u(xlxn) for fixed x'. We can write

Auo

(8.17) = i 5 x+(T+s)e) -u(x+'-e)Jdxn dr

OD T+O

< Y $fly S dx(x )jdxldrT .5 [f(.r+s) - f(r) ] dT
-m R T OD

where f('T) =ýLj [-00 < xn < T] j$dn Idv(xA n)Idx'. f(T) is an increas-

R- -C0
ing function of T, such that f(-ao) = 0, f (0)) 1.LeI, and therefore the last

integral in (8.17) yields limra V-.L, 1 ijj. The proof of iii) is now

completed in exactly the same way as that of ii).

iv) If uc W 00 the integral in (8.2) can be estimated for P go as
p

follows (c being an absolute constant),

(8.18) nnU(X)'u(Y) JP dj,(x,y)

G 2 n+ 1 3 (0)C(n.00)<_ c- 2n20 I-Ux)Uy J.P d•, o(X,y)
°Zn+Zp (0) C (n'P) J.y l

+ 'fluJlp oGn+z(t)? dt.
G2nt2~0 ptt~LR

Since for 0\O, 1- 0 and all remaining factors are bounded,

(.Ga(t) dt - 1), iv) follows.

v) follows Atdy from the observation that lim JuJl,,
01
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Uru(X+se)-U(XJ =i,(x), where [Le(x) is a signed Borel measure with

total absolute mass finite, the limit being understood as a vague limit.

ma x(sup u(x), supju(x)-u(y)I).
x x4y jx-yJ

Remark. If p =o, iv) is not in general true. We have then

lim Jui(, = max(sup Ju(x)], osc(u)) where osc(u) = supju(x)-u(y)j.
AX0\ x x, y

Corollary If 0 < a < a' then for every uEW < 1 <,

a~pJul ,p :! Clul ,,p

where C = max(l+4n,.2(0.8)- , where An is the constant of inequality

(8.8). Consequently, Wa D W a for a' > a.
_ _p P

Proof. It is sufficient to consider the case when 0 < a < a'< 1. Com-

bining (8.4), (8.5), (8.14) and the fact that the integral on the right hand side

of (8.14) is an increasing function of 3 we get for 0 < 9:55 /0'< 1

l 4wn . n C(n,03)(1- '1 ' ) - 1•p M oo

Huoop laxl C(n,[3)p3 An C(n,j3)(lz9-2l~) JI3,1
and the result follows by an easy estimation of the constant in the latter in-

equality.

99. Auxiliary inequalities. In this section we shall establish some in-

equalities involving kernels G which will be needed in the sequel.

We denote by n' a positive integer n' < n, n" = n-n'. Unless other-

wise indicated x', y', z', t' .. will denote projections of points x, y, z, to..

on the hyperplane R' : x =".=xn 0 0, x", y", z", t",.., projections

of these points on the hyperplane R": x 1 = ... 0Xn, . Accordingly,

dx' and dx" will denote volume elements of Re and Rl.

The letter c will stand for (in general different) positive constants
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depending on various parameters. In all considerations we will assume

that the orders a of the kernels G' and orders of occurring differentia-a
tions and differences are bounded from above by some fixed but otherwise

arbitrary number M > 0. The letter X will be used to denote (in general

different) positive constants depending only on n and M. In the cases when

behavior of constants is of importance we shall say that c is majorated by

f( 3y...) if there is a constant )X such that c < J(f(a,•,....) in the

considered region of these parameters.

In several instances we shall use the following
p q 1 1_ 1 thnf er

Young's inequality: fELp, gELq, 0< L +-1 then f•* gp q r

and Ijf* go SOL <_ jLgILq.

From the differentiation formula (2.6) it can be deduced that for any

a > 0 and a multi-index j, JJI < a,

(9.1) iDjG(x)] <k[Ga(x) + 1G l (x)

From series expansions of G (see (Z.3a) - (2.3d)) we also get, with an

arbitrary multi-index J,

X '- for < n +J and DI odd

Ada Jxj'n-D] for a < n÷+ Dj and bJ even

n+ jjJ-a(9.2) IDjG (x)] <
(a -- ), for a> n+jj and bJ] odd

for a> n+jj and DI even.
a-n-jj -

Also for lx < 1 and even 1J]

R, ,aIxF-n-JI(l+log L-) for a-÷n+jlJ(9.21) jDjGa~x)j. 1 1 Xl -
(9.') l-~'- { (l +log -.) for jj n +

Jxj - n I-
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For any multi-index J, JjJ < a, (9.1) implies

(9.3) DG L(Rn); GRn IDjG (x)ldx < K(a-DI)
j a ji ja

Using (Z.2) we easily obtain

(9.4) G (x) dx' = ,G(Ix'l,') = (nl)n'/ZGn(n") .

R

(If n' n, the right-hand side is of course 1.)

Let a > 0 and consider the expression nJAtG (x)l dx. Choose the

coordinates' axes in such a way that the vector t is parallel to the xn axis.

Using the fact that G (x). is a decreasing function of Ix] we can write

(It] = t> 0). in view of (9.4),

•]tj/z

SnJAtG W I-dx = 2 Gi(x)dx dxn

n-i lti/2 n-l oo
2(27) 5 G~') (X ) dxn 2 (27) 5G(l) (x) X(xn) dxn

Ilt/z -co

X being the characteristic function of [- 41-
By the Parseval equality we get for a < 1,

n-l co .oItl 1
AtG =dx - d 8(Zir) sin t dr

n- Adti =x) -x si 8 2r

n-I
!- 8("ZWV (l-coso TI + tjdS0 Y, ZljtIZ+4TIZ)• (It~z +41? i a/

n-I 2(l+a)sinz "7

- 8(27r) It ""a

(9.5) SIAtGa(x)I dx < ? iIt~ for 0 < a < 1.
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Similarly, one gets

(9.6) In tG (x)1 dx --, Itj for a>l.

We could also get the inequality

Snj&tGl(X)l dx < .b(l +log . t-), tj__ 1
R It

which, however, will not be used.

Similar inequalities can be obtained for derivatives of the kernel G

We have, for Iji < a,

(9.7) nI'atDjG(xI d< •.jtI'I <f aI <'<I +1
Y= (t-(Jxl )(l 'a+ lJlj

and

(9.7') 1n'&tDjG(x)l dx :S -•- for a > +j÷ 1.

In view of (9.3) it is enough to prove (9.7) and (9.7') for It] < . For

these values of jtJ, (9.7) and (9.7') are obtained as follows. The integrals

are divided in two parts:

ý < 7.1tj > 41t

The first integral is evaluated (in (9.7) as well as in (9.7')) by using

(9.2) or (9.2') and the inequality IAtDjGa(x) l jDjGCy(x2t)l + IDjGa(x)l, To

evaluate the second integral we write

(*) } tDjGADx)I < Iek DjG (x++re)l dT',

0 k~l
t

where 19 03- e 1 . . On).
ItJ

To obtain the desired evaluation in (9.7) we use (9.2) for the derivatives

of order IJj+1 in (+• and integrate boti sides of (*) over IxI > Ziti
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I 1
(we use here 'JxJ < jx+ Tej < 'Ix"). The evaluation in (9.7') is obtained

even more simply by integrating both sides of (*) and using (9.3).

By a similar argument, we get

lRnAtDj GJ+l(X)I dx <_ XJtJ(l+log lJ), Jtj _ Ii

RIt

but this inequality will not be needed.

We shall now estimate the integral 'A iG(:)I dx', with n' < n,

nit= n -n' > 1. We shall restict ourselves to the case when 0 < a < n"+l.

From (9.4) we have (note: t t' +t", x = x' +x")

(9.8) n IAtG (x)I dx' < 5G(x) dx + nG(x+t) dx'

Rn'R R

-n "(n. G(n")(x" +t, ,n)

a a
On the other hand,

(9.9) , JAtG (x)dx' <--•n < AttG(x)]dx' +n YAt,,tG"(x)i dx'
nIk
Rn

The first integral on the right hand side of (9.9) can be estimated by

an argument similar to that in the derivation of (9.5). Without loss of gen-

erality we can assume that t' has the direction of the xnI axis. Integrating

separately over the regions where Jx' +t'j <= jx'j and Jx' +tIl ý. lxi we get

n'-lI t'VZ
(9.10) 5iAtGaX) dx' = 412-) -(nrG +l) If)dXnI tG xl x 4 )G• (xn I x")dn

0

In view of (9.2) for jj=0, the latter formula gives
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,i IZtGa(x)l dx' [ [(n"+l-a)(a-n"I)]-lIt• "n ii n" < a < n"-l

•nl 
if -- na-

IAt,G (4) dxl < )C(,xg"rn-lIt for 0 < a: n".

R

The second integral on the right-hand side of (9.9) can be written

in the form

(9.12) 5 At,,G(x)] dx' = (r)-n'/Z jIG((nn (x") - ) II( +t,")

R

Assume that Ix"I + 0 and jx" +t" + 0. Since G(n( is a func-a

tion of the radius r jy"j only, we get from (9.12), using (9.2),

Ix"+t'1 dG(n) (r) x"÷t"I dr

Y IAt,, G x" (2rn'/Z1 a rjdr<_)(a dr)

R n = J Ix " rx "I r n "- o + l

(9.n13)-l YItj-n) if n" <a < n"+l,

( 1 I d - <in( x,, J Ix,,+t,,])f -n"1 ljt., if O < a < n" .

The last inequalities combined with the corresponding inequalities

(9.10) and (9.11) yield

(i dx [(nI+l-oa)(a-nI)]-ljtIa-nI if n" <a < n"+l
9 .14) )n]tG (x), dx-' <=

SR (a[min(jxj,,jx,,+t,,j)l a-n"-l jt if 0 < a < n"

(9.14) is now combined with (9.8) using the following remark. If for

positive numbers a, b, c, a <_b and a < c, then for arbitrary e, 0 < e 1,

we have also a < b c Applying this remark for a < n" to (9.14) and

(9.8), and using the inequality (see (Z.3a) and (Z.3b))

G(n")(x,,) S tI' for a < n"
< -1



57.

we get, with arbitrary e9, 0 < <__ 1,

•Rn - It - c aj-nI I if nII < ce < n'4+l; c <- [nII+l-a)(a-n'')]-I

(9.15) IA G (x)4 dx<

Rn c Itl' [min(jxl, x"+ t"]-- if 0 < a < n"

c <Ji(n"- -a)

The following corollary to (9.15) will be needed. If 0 < a < n", and

6> 0 is such that 0 <a-6 < 1 then

C, 1 a-
(9.6)•nlt% xllxl-d < ;ll• c < .n-)•6(-+1-

We outline briefly the proof. We have

nI AtG (x)I fr"1I_6dx A G' ()x"6d CX"

In the first integral on the right-hand side of the formula above we apply

the second inequality (9.15) with 0 = 0 for jxIJ t and 0 = 1 for Jx" > t.

We get

,AtG (x)Jjx"1-[ dxdx" < C IxuI, -n6 dx1., + .tj i -- _dx

and the desired estimate follows. In the integral over jx"jŽ jx"+tJ we

divide the integration over x" into k"+t"I < jtj and Ix"+t"j > jtJ and pro-

ceed similarly.

The previously obtained estimates will now be extended to higher

differences. The basic formula will be the following: for 0 < k' <k, the

coordinate -axis xI being chosen in the direction of the vector t + 0,

1 I
k k' k-k' C

S(**) Au(x) = J At;x u(xT(+... +T k)) d'Tl. . .dk"

Formulas (9.3), (9.5), (9.6), (9.7), and (9.7') give now for k 1_ 1,
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({a(a-bi'I(bi+k-•a)-ltiab for bi <a < DIJ +k(9.17) IDn AjG (x)J dx =<

((a -b-k- 1nk for bl +k <a

l.1k k-iIn the first case, if 0 <a - 12/, we write & DG = ADG

and get by (9.7) the evaluation a(a -bj)-l -ýIaj. If 1/2 < a-ji <.k- 1A

we write -Y (a-bi)/k, AnhJG = AtDjGi+.y* AtG *.--* AtG and apply

(9.5), (9.7) and repeatedly Young's inequality (with p =q r = 1), which

leads to the estimate Iaitj' bl. If k- - <- b] <k, we use (**) with

k' = k-I and u = D.G and then apply (9.7) obtaining an evaluationj a
1%Aljj+k_-a' 1 ja-IJI.

In the second case, we use (**) with k' =k, u = D. G and apply (9.3).

The extensions of formulas (9.15) and (9.16) to higher differences will
1I

be needed only for t t'oK . We assume k > 1, n' > 1, n" > 1, hence

n =a' + n" > 2.

(9.18) $�nkGa(x)I dx' _ ct'l ef"I"-e for a<n"+k, max[(a-n"),O] S=9<_k,

The constant c can be expressed in the simplest way by putting e0 =

max[(a - n"),0] and writing e = eo(l-7) +kT, 0 < 7_<1. We have then

c = )(aIn"-aJl•- (n" +k-•)fT for a #n". k >1 and a-n" <k-i

Ic = XWAn+k-aY 2 T for k>1 and k-1<a-n"<k

(9.18') c = aInII•a-IT (n"+l-a) for a +n" and k =1

C = for a n" and any k 1.

One should notice that for a = n", e has to be strictly positive.

The inequality (9.18) for e =k is obtained by using (**) with k' =k

and u G (x), then applying (9.2) and integrating over Re o The resulting
a

constant c is i%.a(n"+k-a)7
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When a + n", we can take the other extreme value of 0, 00 =
k

max[(a-n"),O]. For a < n", this means 0 0. We write then AtiG =I k-1
At, (At,Ga) and the inequality is given by (9.8) with t" - 0 and with con-

stant )ta(n"-a). For a>n", e0=a-n". If n"<a<n"+l and k=l, the

k
inequality is given by (9.11). If n" < a < n"+1 and k > 2, we write AtGt=k-IG

(AtG +ni) * (IltG-n )G integrate with respect to x' and apply (9.11) and

for the second integration (over Rn) use (9.17) with j = 0. Finally, for a >_

k * k-i
n"+1, which implies k > Z, we write AtG = (At, Gn, +)(/A l n G _

with -y if a-n<= k-l and Y=- if a-n">k-I and argue as in the

preceding case.

In all previous cases we obtain (9.18) by combining the evaluations A

and B corresponding to 0 1 0 and 0 =k into AI" Br. The remaining case

a n" is dealt with presently.

We write YJ ItGne(x)l dxl 'Y~ (jA&,Gfl 1 1 (x)j dx'. By (9.10) this is ma-t n_

jorated for 0< G0< 1 by

Jt'jz V2j/ It, I/A
S(x, X")dx < ..IX dii do

0 0 0

S-• t,!tj0 x",,-1.

and the result is obtained by combining the latter inequality with that for 0 = k.

We next extend formula (9.16)

(9.19) Y$jIA,G.(x)jix"i- 6dx < c Jtja'6 for 6 <n", 0 <-6 <k,

c = max[(k+6-a) (k-In-a)", aln"-a[l1 (a-6)", n-a•1 (n"-6) 1 ]

for a + nI

c =,(n"-6) for a =n".

The proof is completely similar to the one of (9.16) using (9.18) instead

of (9.15).
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Remark. The constants in (9.18) and (9.19) are not the best possible;

they become infinite when a -). n" for fixed & > 0 in (9.18) or fixed 6 < n'

in (9.19) which they should not be in view of the evaluation for a = n". In

the present work we shall not need better evaluations. It would not be diffi-

cult, however, to imporove them by making more thorough use of the exact

formula (9.10).

Our next two formulas concerti differences with respect to two differ-

ent increments t and tI.

(9.20) For 0 < <k, 0<01 <kl, A +31 <-51 I

(At tl D.G(x)l dx S_ ){(l + • l)(k-P-l(k-I)3lflItI

R

Decompose j i U i', hence jl - + Ii'I. Write then

J, A klD.G (x)l dx < 14 G 'x-y)1tIA ,G,+y-z))G _(Z)t •ij • = L 1 0t Jl+ 4 0 0

dx dy dz.

If a +J +••I1 we have only a double integral. Apply then Young's in-

equality and (9.17) to obtain (9.20), at first with a constant depending on

il and Ii'1. Making the two extremal choices jil = 0 and ji' 1 0 and

combining the resulting evaluations, one obtains the desired constant.

For n' <_n, 0 < < k, 0< 01< kl, 0+01=a - jil,

(9.21) Si k l-n"0 1 1(x)IdxdtI1 < cj0

with c , ),[min(PP,,k-i3, k l -Pl)r1 (k-•) 1'(k-)l(l + z

In the proof we divide the integration relative to t'1 into jtll < It
and jti] > Jt. For I1,1 < It we apply (9.20) with 0 and El replaced by

P-c and Pl+ c respectively, where c 1/2 min(p, •l,(k-•),(kl-•l)). For
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I t'1l > ]ti we apply again (9.20) but with • and 1 replaced by P+ e

and 0 1-4 respectively.

We finish this section with the following inequality

rk JD.G (x)]
(9.22) d a c for n'5n, > 0, and,n Y0 7+n'---

min[a-Jjj-Y, k-,]y T > 0, c = )t[Ty(k-y)1

Integration over t' is divided into I tVj < I and t'J > 1. In the first

part we write I ,Dj.G(x)I <Y I A'] D G (x-z)]G _(z)dz with a' = ili +

Y + T/Z. Integrating over x (where we apply (9.17)), then over z and finally

over It'] < 1 we obtain an evaluation ((-y +T9/2) (k-fy)-I. In the second

part~~~ we wrt ~ tg~~) x~ JSDjG (x)] dx which by (9.3) gives, after

integration over It'I > 1, X(a- WI)-l- <N.(y+/)-1 -y

S10. Special integral transformations.

In this section we will describe certain regularity properties of inte-

gral transformations occuring in connection with the representation formu-

las of §5.

The properties established here (in particular in propositions 1 and 2)

a asimply that for uE W and uc1S'P with suitable a, the integrals occur-
p

ing in the representations formulas of section 5 considered as integral

transformations applied to u, its derivatives, difference quotients of u and

its derivatives are p-absolutely regular (in some exceptional cases p-
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semi-regular). Consequently, for u in a suitable class W or &a,p
p

the corresponding identities are valid pointwise almost everywhere. Fur-

ther consequences of this fact will be presented in sections U and 12.

We use the same notations as in %9: n' is an integer, 0< n' n.

dxdt tdxdt_
n" = n-n', dp(x,t) -1-, dp.'(x',t') "xdt

We recall (c.f. §6) that the statement k(x,y) is a p-s. r., p-r or

p-ab. r. with measure spaces fX,di11 , [Y,dv} means that the transforma-

tion ,IKx,y) u(x) dp. is p-s. r. , p-r., or p-ab. r., respectively.

nil

Proposition 10.1. If a-bi - > 0, then the kernel K(y,x') D. GY)(x'-y)pj a

with measure space's tOdy. ,Rdx'l is p-ab. r.. For a - Jl-ni' >0 it

is ab. -r..

Proof. For n < n' the proposition follows directly from (9.3) and

Young's inequality; the bound for the transformation k is in this case major-

ated by

For n' = n we consider first the cases when p =1 and p = o. For

p l, a-lJ > n" and condition (6.4) must be verified. By (9.1), (9.4) and (2.3d),

a -J a ahin
kn ' I .j-J '(Y"-)]-ni

If p n 0o, a-D] > 0, (6.4')has to be checked. By (9.3)

Let now 1 < p < co, n- <a- 4. In this case we apply Method I of g6
pn" ~(n").,,pyp

with cp(y) [c, bn(y,) + (,,bjl)G () y)] and o(x') 1. By (9.1) and

(9.4) we get
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$D;G (xt-y)jdx. < -" G ( ) ] 2q(y)P/P

On the other hand, using again (9.1) and (9.4) we get

.•.. 1%x'--y)] [ad (y") + (,a-bl IG (yl"l • dy , dy-S a 64a a
< x ,R n (y" + (a•bj)G(nl)(y.)]p dy"

In view of (2.10) this is < X kpx) , and the
(a-bl)(a-Dj -n p p) •

proposition follows from Theorem 6. 3 with the p-bound of the transforma-

tion majorated by

(10.1) M < a-IJI)-(a- bD - ) .
p T

Proposition 10.2. Let k be an integer, k > y >0 and let .- DI >Y

then the kernel - tx 3 a with measure spaces Rn;dyItq
ntxRn', dWx,') has the following properties

~nH i) If a-j-->7 then Kis p-ab.r. for < p< c.

ii If 0a-n"- -y then K is p-ab.r. for I < p<co.

p

iii) If ni" 0, and a-bi =7y then K is p-s. r. for Z < p< o and its

adjoint kernel is p-s. r., for 1 < p ý 2.

Proof. i) We write, using the composition property of G
a

1 ;x4Y)G (x'-y)i k Dn' z)Gjj . +(z-y)Ga.j .r(xl _) d:

j~tyED(Y)Gjj 1  z)+~zYG ii
ANtlI+Y4 zyGab Y (
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with t - rnin(k-y, a,-jj -.-y-n'yp) > 0. We apply now Method 11 of ý6

with inner factor X(z) = [G_(no) Y- - . By (9.4) and (9.22) we have

A , t•+nk !z)PzG)j _(x',z)dx'dzdt,

ccn •Rn t, DZ)GII(z)I-

By (9.17), (9.4), and (2.10) we get

B-- ,,; zj , + -+ EP z X(z)-PG'G J] _b_ (x-•z)dydzd< Y(]• Yl -)I t" •yn' "b-'(')

< •(l+) k-1) ,JnJ _•_~yE1J z] _(Jjyhkv(a~j.~'p
k

It follows by Theorem 6.3 that the bound M of our transformation
p

can be evaluated in the present case by

(2 M"I h,.l/(k-v)(a-.,-i -- n"•/p)I ' , where

ii) In this case we shall apply Method I of •6 with the factors

tq)() "j Yttl-II/ and •,(x',t') = 1.

We have, by (9.19), with aa n+ n'(p, w get
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nJK(yx'xt)Jq,(Y) =•n S J~t;]a G(x'-y)J jy"J
R ft lJa.n -dy _K C.

On the other hand, by (9.18) we have, for It'I = jx"j

I S, lnG (x'-yj) dx-' CjyliiIan"k It'lk

and for jt'l >= Iy"I,

' c an" if a < ni"

3i c,G(x'-y) dx' _ cIy"J-ft'E if a =nil'- --

in cif a>n'-

Therefore

t'l'dx'dt' + (d I' G (x'-y)ldxldt'SI , a - + n l ,' Y yI , x

tiJ t'j Py

< C ly11jt /.

which completes the proof of ii). An evaluation of the bound M can be ob-
p

tained from the constants in (9.18) and (9.19).

iii) With a- yj -y, n" = 0, x' x, t' t, we get, using (9.17)

titx i4aD'lbx y)l d <_ (a-bj)-(k+bI -&)-a

and hence K is oo-ab. r. and the adjoint of K is 1-ab. r.. We shall prove

now the 2-semi-regularity of K and its adjoint. By Theorem 6. 4 it is

sufficient to verify that

for all simple functions u on R with some constant C independent of u and

that
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(**) I~n~ny~x~t) w~xt)dýLx, t)L( - jjj
11I RR L L 2(0 xR' d1 ±)

for all simple functions on {RnxRn,d•j with a constant C independent of u.

To prove (*) observe that for any simple function u,

Ak DYG (x-y)
tX , t,_ I'& u(y) dy - "'Ll(vt(M))

where vt(6) = (e-It)- 01 ) )(l+IeI )a/

Hence, using Parseval equality and (5.18) we get

IWn12n vg)dI ('.t 2 C(n°G-a Al A-k; s9 L - 2Ju•z(}
L Ux,(ex.e., dU.) vtRjd••t R<=

Similarly, if w is a simple function on jRnxRn;dpj and

u~) $ t; x J. I w(x,t)djL~x,t)
ujtj ajll

then
SY (l+ 4),t)dt

A

where w(g,t) is the Fourier transform of w(x,t) with respect to x. Using

Schwartz' inequality, Parseval equality and (5.18) we get (**) with the same

constant as in (*).

iii) follows now by interpolation (see Theorem 6.5). For Z p k co,

the p-bound Mp of the transformation is equal to the p'-bound Mp of the

adjoint transformation and they are both evaluated by

(10. 2i11) =Mp K. 1_2p lkb-
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Proposition 10.3. Let k > y > 0, and a-_Ij- I-_ >y. Thenthe kernel

K(x' ,y,t) measure spaces iR tdx'1 and jRnxRndjJ(yt)j

Jt]"'

is p-ab. r p< co.

The proof is completely similar to the one in Proposition 10.2 i). We

1choose c Z 7 min[(k--y), (a- j-7-n" p')] and apply the second method with

the inner factor X(z) = fG(n' I)/
the- z . The p-bound of the present trans-

formation is equal to the p' -bound in (10.2i).

Proposition 10.4. Let k > y > 0, k' > y'> 0, a- Y- - + n _
''-y)

tli;x' t;y a X -

I •p S c. The kernel K(x',tV,y,t) with measure

spaces tR nx Rn, d~i(yt)l ,R RnixRnI, dý.L(x'Jt1)l is p. -ab. r.

Proof. Consider first the case when n" 0. Then by (9.21) K satis-

fies conditions (6.4) and (5.4') with constants A B. Hence K is 1-ab. r.

and no-ab. r. and by interpolation, (Theorem 6.5), it is ab. r. with p-bound

A = B given by

(10.4a) For n' n, M

Consider next n' < n and I < p < wo. We use now the general criterion

of Theorem 6. 3 with kernels

1"|J i J tlk' f'I÷'++ "xlz)l +z+(+'YpY)kdD''
K1 (y,t,x',t) t=i,-tIrt'l-[' ]tl;xGn,'pl,+-A6;yD E( zy)jdz

K 5t)' ' 'j k' (x' --+ I111 -."''Y Ajt;y j ) G,:,J(--y) dz..i

We have put here -- a-n"/p-y'; E f 1 o depending on

whether Jy'-n'bp'j => EO/ or jy--n-p'J < cO/Z (so that_17'- n'*'+÷el -;IEO)
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with c = min(,y, y', k-y, k' -); the upper or lower sign accompanying e is

chosen depending on whether jt'lj _ IJ] or jt'lj > Ijt. .

Condition (6.5) is checked immediately. The first inequality in (6,6)

is obtained as follows:

j Kl(y,t.-,t')jt I-n' dx' dt Z.

Iln

= -n'-nl k' n I

I Gn;i~l It 1+ ~(~1 )jJ oriyd~jxdd

R

We integrate first with respect to x' applying (9.18) with E9 = 'Y' + e, and then

integrate with respect to z, applying (9.17), and then with respect to z1 . We

end with integrals with respect to t'I of the form

C j Ctll c 'nJ dt'1 + C i lt -il C'd n dt1 <_ Ac-4 = A.

We treat similarly the second inequality in (6.6) where in the integral

K?(y,t),x t dy dt ... d I dz dt

R~~R R Rn~~

we apply (9.17) for integration with respect to z and (9.19) when integrating

over z, and end again with integrals over jIt ?- Ijt1J and jt] < It'lj similar to

those above. For the constant B we get the evaluation J.E 4 (n"/p') 1 . For

1. The proof could also be obtained by applying the second method of C6

separately to the two components K' and K" of our kernel K = K' +K"o where

K' =K for t'lJS ItlJ and K' =0 for ltl > Ijt.

2. If •- j-J --- =0 the last integrals... dzI is replaced by ;y GYl+
N; jjj '(sY
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the bound M we obtain thus

(l0.4b) For n' < n, M < A 'P' < [min(-y,y',k--y,k'-_,')]-4.

This evaluation is at first obtained for 1 < p < oo. However, since it

is independent of p it is also valid for p = 1 or p =-oco (one could obtain simi-

lar evaluations more directly by using (6.4) or (6.4')).

Proposition 10.5. Let tERn be fixed, 0 < • <k, 0 < y <k', a> •-•y.

i) The kernel JtJ'A Ga(z-x) is ab. -r. for measure spaces (Rn;dx) and

(Rn;dz) with bounds independent of t.

ii) The kernel j t- 1 ;zk' Akt;z Ga(z-x) is ab. -r. for measure-spaces

(Rn;dx) and (RnxRn;dL(z,tl)) with bounds independent of t.

Proof. We show that the kernels are 1-ab. -r. and co-ab. -r. by find-

ing evaluations A and B for the corresponding integrals (6.4) and (6.4'). In

case i) we apply (9.17) with bi = 0 by writing K(z,x) = JtJ- z G (z-y)

Ga -(y-x) to obtain A and K(z,x) = G (z-y) * kt;x (y-x) to obtain B.

The p-bound so obtained is

(10. 1) M:ý K -1
( i<K,(k-I3) for I <p <oo

In case ii) we apply (9.21) to obtain A and (9.Z0) to obtain B. The

p-bound so obtained is

(l0.5ii) M < FJ[nin(I3,y,k-I,k'-'y)f]P(k-I)'l(k'-y)-I for 1 < p _< co.

Remark 1. Statements in Propositions 10.1 - 10.4 pertaining to

p-ab. regularity of an integral transformation are equivalent to p'-ab. regu-

larity of the corresponding adjoint transformation. When we refer to such a

statement about the adjoint transformation we will write "adjoint proposition"

(e. g., adjoint Prop. 10.2).
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Remark 2. In the preceding propositions we considered only the mea-

sure dp.(x,t) or dL'(x',t'). In the following sections we will need these propo-

S G Zn+21(t)sitions often with the measure d -(xt) = - nC dt(x,t) ( or

d•P(x',t)) replacing dp.(x,t). Whenever the statements pertain to p-ab. regu-

larity, by virtue of Theorem 6.1, we still have p-ab. regularity with the new

measure, with bound MP < (C(n,J3))_' M or < -(C(n,A))-/PM dependingp p p
on whether the measure is changed in the domain-space or the range-space.

The only case when we deal with p-s. -regularity is in Prop. 10.Ziii). By

checking directly the proof in this case (especially for the 2-s. -regularity)

one verifies immediately that p-s. -regularity is maintained with dja, re-

placing d•i, the evaluation of the bound being changed as above.

S11. Inclusions. Wa and 73a'p as spaces of potentials.
p

In this section we give a description of inclusions between spaces Wa,
p

LP and -13"P We also derive some representation formulas for functions

of Wa and 75 'P which allow us to characterize those spaces as spaces of
p

Bessel potentials of certain classes of distributions.

It will be convenient to introduce the space

(11.1) Ap= [LP(R) x LP x R, dxF 0 ), x... x [LP(Rn) x LP(Rn x Rn, 4L)]

m+ln -1 times

if a is not an integer, a= m+fO, m =[a], 0 <f <1, and

(11.1') A• = LP(Rn) ... x LP(Rn)

n-+l1 times

if a m is an integer.
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Elements of AP will be denoted by Iv., w.1 or by I v.1 if a is an in-
a 33 3

teger, j being a multiindex, 0 < m<i. The norm in AP is defined by the
a

formula
m

(1. 0 , vjwj ~ -' ,=-J7(zw)1•lf'ý• IvjZp(ln).

1=0 jI L

Clearly, W0 is boundedly imbedded in AP (with approximate norm
p a

1"Sp isometrically imbedded), the imbedding being defined by

A D.u(x)
3v. D.u; w.(x,t) - (u3 Wa).

1 v J , t-1  p

Wa can be therefore be considered as a (closed) subspace of Ap
p a

LP will denote the saturated rel.0 L-space of Bessel potentials of
a0

order aof functions in LP, i. e. the space 'of all functions u for which there

exists a function fE LP(Rn) such that u(x) = G * f(x) almost everywhere.a

The standard norm of u is defined by

(11.4) lull,,p = llR l1 P(e)•

The space LP was investigated by Calderon [ 6 ]. An equivalent
a

definition of Lp as a space of distributions is that LP is the space of tem-
a a

pered distributions u whose inverse potential of order a, G au, is in LP. 1.

The space LP, for p < co, will be considered as an imperfect com-
a

pletion of the space CO with norm given by

liull, p = IG Zm.a * (t-A)mu Lp,

where m is an integer >ý a/2. For p = co, the imperfect completion leads

to the space L!M < ; this is the space of all bounded functions u such that G u
a -a

is continuous in RnU (co) and vanishes at co. Obviously LOt Lo. For p =I

we introduce also LIa as the space of tempered distributions u such that G Cu

A /Z A
1. G u is given in terms of Fourier transforms by (G u) =(1+ Y u.

-a -a
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is a Borel measure of finite absolute mass; we put lulll =M..qUI(R)

Obviously again LIo C L'>C LI for 0 < a.

The perfect completions corresponding to spaces LP will be introduced
a

in S13 and denoted Pa'P.

As concerns inclusions between spaces Wa and La we have the follow-
p p

ing theorem:

Theorem 11. 1 i) If a is an integer then LP =%O for 1 <p <a.- p

ii) If a is not an integer then LP D W for <p <2 and JYCW -for 2 =<p<
ap - a p-

co. iii) If a' > a> 0, then W alC P and 1YC Wf.p a p

Proof. i) Let a =m be an integer. f ucLP, 1 < p < oo, then

u-G-m* f, fe LP(R') and therefore by (5.7) and (6.13) the distribution deri-

vatives Dju, Iji 1• m, are in LP(Rn) and there is a constant C independent

of u such that lum~p g CIiD - CiluLp. Conversely if uEWm then
m P

(5.30) gives for f = Gmu the expression f = ; (') (-lý ; D.[G *o Ij[G m*Dju]

in sense of distributions and therefore by (5.7) and (6.13), f4 LP((Rn) and there

is a constant C independent of u such that JIfILP < CluIm,p

ii) Let 1<_p<2, a=m +0, m=[a], 0<06<1, and ucCOD. Then

G u is clearly defined pointwise by formula (5.28). We write this formula

in the form

(11.5) G au(Z) W. I (- ) (-19 DjG * vj(Z) + n t j a j(x,t)d xt)

1=0 Itj~ I' j
with v1 , w1 as in (1.3). Ga can then be interpreted as the result of a trans-

formation of an element of AP. In view of the propositions 10.1 (for n' = n)
a

the adjoint Prop. 10.2iii) and Remark 2, :10, there is a constant C indepen-

dent of u such that .G auLp : cJuJ,p for 1 <_pg2.
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Let 2 <p =<oo and u = Ga * f, fE Lp. Then by Prop. 10.1, Djui LP,

Ii J m, and there is a constant C independent of u such that lDbuI <

AMDju(x) L =

Jf Ip. On the other hand the expression w= -= t is the result of

the integral traneformation of Prop. 10.Z (n n') applied to f (with measure

dp. replaced by d4,) and by Prop. 10.2 and Remark 2, §10, there is a constant

C independent of u such that Cw f I . Thscompletes

the proof of ii).

iii) Let ue Wa. Since Wa with increasing a form a decreasing
p p

sequence of spaces we may assume without loss of generality that a' is not

an integer, a' = m' +', m' = [a'], 0 < 0' < 1. Then by (5.28), u G a* f

where
m

(11. 6) f (z) jm [((l 9 D G~aa v (z) +1 =0 =1
]tX j 2 w ix, t) dý,.ix~t)]

v. and w. as in (11.3) (with 1' instead of 1). By virtue of Propositions 10.1

(with n' man), 10.2 i) (adjoint, with n' = n) and Remark Z, .5I0, formula (11.6)

is valid pointwise almost everywhere and fg Lp.

On the other hand, if u LPI , u G, * f, fE Lp, then by Proposition

10.1, D uELp, IJj < a', and iii) is proved for a integer. If a is not an in-

AtDju(x)fo <mbonst

teger, a =m +0, then the expression D for DI < m belongs to

LP(RnlxRn, dIts) by Proposition l0.Zi) (with n' = n) and Remark Z,10, with

norm bounded by CjIfHj with C independent of f.
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Remark. It can be proved by examples that the inclusions in ii)

are proper for p 4 2. It is well known that W and L 2 coincide fQr every
a

a > 0 (c. f. [2]).

We now proceed to prove the following theorem.

Theorem 11.2. If a > -y and both a and a--y are not integers, then

a a- aW = G Wa, 1 < p <o. More explictly, the space W consists of all
p 'Y p -- p

functions u of the form u = G * v, vc Wa-T, and there are constants
It p

C 2 > 0, independent of u such that

(11.7) C a-T,p a,p IS C2 -',,p

Proof. Let UEWp. By propositions 10.2) and the last remark of §I0,

the inversion formula (5.28) is valid pointwise almost everywhere if 'Y < a

and a is notaninteger. Let a=m+9, m =[a], 0>f3>1, a--y=m'l+9',

m' -[a-,y], 0 < 01'< 1. Then for jJ1 < m'

m

(11.8) DjG_ u(z) (-l)bl H (m) j, G,,,-T(z-x)vj(x) dx

I =0 R

t t;x •IU G 2a-y(z-x) w (x,t x t

where DvJ' wheu(z) a meaning as in fOrm (11(zax)(

÷•R•R ly ~ (m) ,tj)Gz , a- a-z'x vjxt l(xt) d
(11.9)ti titI,, F-

where vi, wj have a meaning as in formula (11.3).
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1 1

Noticing that d•i,(x,t) dpl-(xt) and recalling that

P(1-0) for 0 < 3 < 1, using Propositions 10.1, 10.2i) adjoint 10.2 ii), 10.4 and

Remark 2, l10, we get G ucWY-7 and IG u•.yp < Cfuj with
p <-

Conversely, if ucWa•7 then G u is given pointwise almost every-
P y

where by the formula
ml

G 0 ) [S 1 (_>z-x) Djv(x) dx

1=0 RF

÷S •n ARnt;AJGza - (Z-x) AtD v(x)

R Rit-

Using the same reasoning as above we conclude that G ve WP and

jGVJ, _, Clv_ with C < n11 -.

This completes the proof.

In particular it follows from Theorem 11.2 that Wm+ = G WO forp m p

0 < < 1 and m integer, and there is a constant C > 0 such that C-IH# p

lGmvl < C lvl It follows from the estimates indicated in the prooflmV m+0,p -= ,p

that the constant C increases unboundedly as 3 -*. 0 or 13 -h.- 1. For

1 < p < co, this result can be improved by using singular integrals. This is

done by means of the following proposition.

Proposition A. If K(x-y) is a kernel such that for fE LP the integral

Kf(x) =- nK(x-y)f(y)dy (possibly understood as singular integral) exists

pointwise almost everywhere and there is a constant C independent of f

such that

1.1o 
<0 C)f 11

then for every vE WO, 0 < 3 <1, KvcWO and ]Kv1 p < 1CvJOp with thethe p p • •p .~
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same constant C as in (11.10).

The proof follows immediately if we notice that AtKf KAtf and that

juJlp-= ul~p + nn G+ 2n (t) IAtuIP dt.
Lp nC (nO)G (0) pp t LPCln lZn+ (o

We can now state the partial imporovement of Theorem 11.2:

Theorem 11.2'. There exists a constant depending only on p, n, the

positive integer m and an upper bound of a such that for 1 < p < co

C-lvlp l 1 ~mFVa+m,p <_ Clvl,p.

Proof. Obviously it is enough to consider the case 0 < a <1, m 1.

Put ux GlV, U • v. By (5.30) with mr =I, we have

n

v(z) = (GI* u)(z) - G

k~l k -

As in Theorem 11.1. i), this gives our present theorem for a 0 and,

by Prop. A, also for 0 <a < I with the same constant C. We use then

Theorem 8.1 ii) to extend it to a = 1.

The next theorem is a counterpart of Theorem 11.2 for spaces bcp

In its proof we will use the following obvious propositions

Proposition B. Consider two measure-spaces (X, dp), (Y, dv) and a

kernel K(x,y) p-ab. -r. with p-bound M for JK(x,y) 1. Let K'(x,y) -

A(x,y)K(x,y) with J.A(x,y) j S C = const, for all x, y. Then K' is p-ab. -r.

with p-bound < CM
p

Proposition C. Consider three measure-spaces (X,dp.), (Y,dv), (T. dw),



77.

and a kernel K(x,y,t), xE X, yc Y, tE T measurable in the product space

XxYx T . Suppose that for each fixed t, K(x,y,t) is p-ab. -r. with p-bound

for JK(x,y,t) I uniformly bounded by M. Then, if the total mass W( T) is

finite, the kernel 5K(xyt)dw(t) is p. -ab. -r. with p-bound < Mw (T).

Theorem 11.3. If a > y> 0, 1 < p <co, then G_7 = i'a.
___ __ _ _ - a--y 1

More explicitly, 5a'p is the space of all functions u of the form u = G va-'y

with ve 15 'P and there exist constants C, C > 0 depending on a, y, k, k'

(k, k' are integer, k' > -y, k > a) such that

(11.11) CIvJI~k j JGa.,~p V Ci 1(IX~iy, c v p, k,= I .!S a7L,p, k =<'vlyppk "

Proof. By Lemma 4.1 we may assume without loss of generality that

k = [a] + 4 and we may choose then k' so that k-k' >=a--,y +l and k' > 7+1.

If vE7 eP then by Young's inequality we get G vELP and JJG VJ -" ay- Lp

IvhLp . Furthermore, for every t, AGayv = k't k'

Applying (9.17) (with ji 0) we get 5 1tr-a+Y- k'G _A.(x)Idx < C and hence,

by Young's inequality Rn

S t G a dt Sn •nt 1n)(,p1p tI-ikv1Ip dt

R n 'yLP R

which achieves the proof of the second inequality in (11.11) with C' < .

Put now u = G v. Hence v = G u. We use the formula (5.22)a-7 7-a

which at first we know only to be valid in sense of distributions (we replace

0 by a and a by a-y). By shifting a suitable number of differences from

G a+ to u (or vice-versa) in the convolutions we can rev•ite the formula

(still in sense of distributions) as follows
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(11.12) G. u(z) =

k GZk- M
kk X kk -4 4 ,I-k)t;t GIn+2t z ( k u(x) dxdt

C,1=0,1'00

-1+1' > k

We have here a linear combination with constant coefficients of formal

integral transformations. Our aim is to show that when juipk < co each

of these transforms is in LP(Rn;dz) and when we apply jtl-jt'.tz to them

we obtain functions in LP(RnxRn;dI(z,tl)).

Consider first the transforms in (11.12) in the first sum when 1 +1' k.

Their kernels can be written in the form

(11.13) K(x, z,t) dw(t)

with

K(x, z,t) = A1 +1' G z-X)t,z-1't;z G+ +y-
for 1+ 11 <_ 1

dw(t) = t[-n-Za A2k1-1 G (t) dt 1 fr,-,-t, (I-k)t;t GZn÷2a()d

K(x,z,t) •tJ• At z-11t;z Ga+ 4Z-X)
for 2< 1+I's k

dw(t) = _J-n-Za+p Zk-l-l'&t,(I-k)t;t r~n÷2a-t-) dt

- min( + 11 '-1, a)

By (2.11) andin view of the exponential decrease at m of GZn+2a , dw0(t)

has a finite total mass g Jj. The kernels JK(x,z,t)j are p-ab. -r. for

(Rn;dx) and (Rn;dz) by virtue of Prop. 10.1 and 10.51) with bounds _) in-
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dependent of t. Furthermore, the kernels tI- k•~ K(x,z,t)j are p-ab. -r.
jdit z

by Prop. 10.2 i) and 10.5 ii) for (Rn;dx) and (RnxRn;d•i(z,tl)) with bounds in-

dependent of t. Hence, by Proposition C above, the transforms in the first

sum in (11.2) have norms p,k bounded by c ujjp,

Consider now the second sum in (11.2) where 1 +11 < k+l. The corres-

ponding transforms can be written

(11.14) RnRnA(t) K(x,t, Z) w(x,t) dp(xt)

where we put

4 a( +1i'-k)
K(x,t,z) = Iti k i +P -kA; ; z G aft(z-x)

a(2k-I -P)
A~t) j "'t, (I-k)t ;t G2n+2a(t)"

We have here A(t) g J6 (by (2.11)), K(x,t,z) is p-ab. -r. for (RnxRn;dL(xjt)
and (ER, dz) (by adjoint Prop. 10.2 i)) for n' = n and J]-0) and jtlj-tk•;zK(X,z't)

is p-ab. -r. for (RnxRn;d.(x,t)) and (RlxRn;d4(z,tl)) (by Prop. 10.4 with

n'---n and jj 0). By Proposition B, this finishes the proof of the first in-

equality in (11.11). By checking on the bounds in all the propositions used in
1.

our proof we find the following evaluations for the constants C and C' in (11.11):

(11.15) 1/C < < C • , for I < p < co.

Theorem 11.4. If a is not an integer then ,'p Wa , 1 < p o.

If a is an integer then 12)IPC Wo for 1 < p < Z and WapC p for Z<p:ýoo.
p - = p

1. On the assumption that k and k' are chosen as they were at the beginning

of the proof. For other choices of k and k' the evaluations should be changed

by using Lemma 4. 1.
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Proof. The first part follows directly from Theorems ll.2 and 11.3

and the remark that for 0 < 0 <1, p W , l~ p <co. To prove the

second part, observe that if ue 1 P a-integer, thefr u Ga .

0 < c < 1, and the norms lula,p~ k and jfi CIp are equivalent. By the

reproducing formula (5.24) (with c m c) and Propositions 10.1, 10.Z i) adjoint,

we also have pointwise a. e..,

u(x)A G (xx-y) At f (y)

nG (x-y) f (y) dy+3 t;Y a~ t E y~t
a+C C ~ ~~~It, tiE ~ c Y

Therefore derivatives D u, j -• are given by the formula

ccA £6X)G (X-y) Atf (Y)
D .u(x) - •x 3n ta+(x-Y) f (y) + 3n3 t j a+)•t f dt( (y, t).

R R+A R Itj6  It 6

The right-hand side of the last expression can be interpreted as the

sum of results of two integral transformations applied to f and wE =

I (y) respectively. By Propositions 10.1, 10.2 i) adjoint, and 10.2 iii), the

first transformation is absolutely regular for ai < a, the second is abso-

lutely regular for IJI <a and p-s. r., I_< p S 2 if aj -. Thus lapC Pp

if a is an integer and 1 < p _ 2.

To prove the ouposite inclusion for 2 ;S p ; oo, we remark that if ue Wcp

p

then by (5.29) (with m = a) we have, at first in sense of distributions

u iG *f where

(1l.1 f (y-s) Dju(s) d.

1=0 oJI RI

Applying Prop. 10.1 we prove that this in a bona fide integral representation,
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that f f LP and is given by (11.16) a. e., By Theorem 11.3 it is sufficient toE

prove that f E-'P, 2 -< p < o. We know already that f ELP; on the other
E E

hand - can be written as a linear combination of terms w.(yt) given

Itlt
by the formula wjyt -_•nAtyjGzt[ ISZ -)Dj) ~d.

By Proposition 10.2, for 1] <a, w (y,t) is the result of an absolutely

regular integral transformation applied to D.u; for a and 2 < p 00

it is the result of a p-s, r. transformation. Hence w.c LP(RnxRn, dp.) which

completes the proof.

a0 ,p
If for fixed k 0 > a 0 > 0 we choose a norm Dull on 1b equi-

valent to juaopok and then define OUu ap = JicG uja for u 4aE p

a > 0, this norm, by Theorem 11.3 will be equivalent to 'u]apk for a > 0.

If we restrict the choice of lugj by the additional requirement that for

p =-2 it coincides with lul, lulaZ we shall call the resulting norm,
0 0

Jul a.p a standard norm on i;J2'P. The simplest such choices of lull a

seem to be the two following norms: the first, for a 0 = 1, leads to the

standard norm:
(II.17 Jlu]P~s 11 G ]]G'U-;P÷ + nZlogL/ln]) . nit ]-n-Po A2tGl- U(x)]PP dt '

5L~ 4ir .log 2 RnL

the second, for a0 -V2, defined by Jul VZp lul 112 p leads to

(11.17') liujap u u IUp + n1+ •J/2) n -P/St Gzn÷I(t) AtGj2 aup dt.
a -- Vp adt.J~
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Recapitulating, we can state

Theorem 11.5. Consider -fb with a standard norm for a.? 0. The

potential operator G is then an isometric isomorphism of 1uaP onto

A'+7'P. For p .2., '2= W- La with equality of standard norms in

all these space.

Remark. For any norm Julj as defined above, and function u(y)

we can consider the function 4(a) ! jUu ,p oo if u4a'P) for a > 0.

Obviously 4?(a) < co implies aj(a') < po -for a <. a. Itcan be proved without

much difficulty that 12 for all a, 6(a) is cont*u.4ou tU t ;O kht; 2i t 4(a) < GD,

for 0 < a • a' then 6' is continuous on this interval., we take for julalp

the norm (11.20) or (11.20'), then 6(a) is non-4scerewsiag.

Consider the inverse potential operator 0 asppie4o *P. This

gives a space of distributions 0 (j~OP) which,, by Theorem 11.3, is indepen-

dent of a. We will denote this space by BO'P. Hence

(11.38) 1 ,p . ( -p) for a?. 0,

Since for 0 < P < 1, is = WP, we obtain by Theorem L.1Ii) - in view

of the fact that 0(L) -LP,

(11.19) B0 ,P C LP for l•.p.Z, B0PP :)LP for Zlpco,

As a consequence, we have also

(11.20) fa'Pc for IjpA, "paP' L P3frc,
- lu l

3 rId 2' 1'1
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S12. A projection formula and conjugate spaces.

In this section we shall need some results of the theory of pairings and

associated norms (c. f. [4]). Let A and B be complex Banach spaces and

< v,w > be a bilinear hermitian complex valued form on AxB (i.e. linear

in v, antilinear in w). The system [A,B, < , >] is called a pairing. A

pairing is proper if <v 0 ,w> = 0 for all weB implies v0 =0 and <v,w0 > = 0

for all vEA implies w0 = 0. The norms in A and B are admissible with

respect to the pairing [AB, < , >] if < v,w > is a bounded functional on A

for every fixed wEB and a bounded functional on B for every fixed vEA.

Let [A,B,< , >] be a proper pairing and norms in A and B be admissible.

The correspondence v--* f(v) = < v,w> is a canonical linear continu-

ous mapping A --- B* where B* is the anticonjugate of B, i.e. the space

of antilinear continuous functionals on B. Similarly, w --)- <v,w> is the

canonical mapping of B into A*. We say that in this pairing B is canoni-

cally isomorphic with A* if every-linear functional cp on A can be represen-

ted in the form cp(v) = <v,wT > with some fixed wCeB (since the pairing is

proper this wcP is clearly unique). A bounded operator P*:B --PB is called ad-

joint of a bounded operator P:A -v- A with respect to the pairing [A,B,< ,>]

if < Pv,w > =< v,P*w> for all vEA and wEB.

The adjoint may not exist for some operators in some pairings. In

the pairing [A,B,< , >] every bounded operator on A will possess an adjoint

if and only if B is canonically isomorphic to A

If A0 is a closed subspace of a Banach space A then we say that an

operator P:A --a A is a projection of A onto A if P is bounded, P(A)-

A 0 and P p.

If a projection P of A onto A has an adjoint P* then P* is also a

projection.



84.

Theorem 1I.. Let [A,B, < , >] be a proper pairing of Banach

spaces, A0 ,B 0 be closed subspaces of A and B, and PP1 be adjoint pro-

jections of A onto A0 and B onto B 0 respectively. Then

i) The pairing [A 0 ,B 0 9 < , >] is proper.

ii) If B is canonically isomorphic with the conjugate space of A (in

the pairing [A,B, < , >] ) then B 0 is canonically isomorphic with the con-

jugate space of A0 (in the pairing [A 0 ,B 0 , < , >] ).

Proof. i) Let v0 EA 0 and < v0 ,P*w > = 0 for all wEB. Then by de-

finition <v 0 ,P*w > =<Pv0 ,w> =ýv0 ,w> =0 for all wEB and,

since the pairing is proper, v0 = 0. The proof is similar for w 0 EB 0 .

ii) Let (p be any bounded linear functional on A0 . By the

Hahn-Banach theorem p can be extended to some bounded linear functional

(p on A. By assumption there is an element w9E B such that •(v) = <v, wP>

for all yEA. Hence for yeA 0 , 0Cp(v) = <v,wC> = < Pv,wq> = < v,P*wq >=

< VWo0>=P wCEo. By i)w9 is unique.

We proceed now to apply Theorem 12.1 to the case when A = Ap

B =AP' (c.f. :§1). For {v.,w.I EAP and {v'.,w1EA^P' and for {•VcAPa a a a a

and cv'jAp, if a is an integer, the bilinear form < , > is defined by

the formulas
m

(12.1) < v3 ,wj, [vI ,w, > = v (x) dx

+ S wj(x~t)w wj(x~t)ds.L,(x~t)]

for a not integer, m'= [a], • a-[a], and
m

'12.1')<{, 'V l >m v-- (0--•IKnx) v I()dx

if a is an integer a m.
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The pairing

is clearly proper, the norms in Ap and API are admissible and for I < p < co
Ia a

A is in this pairing canonically isomorphic to the conjugate space of APa a

As indicated in §11, for every p, I < p _ co, the space Wa with norm

1 p can be isometrically imbedded in the space AP, the imbedding Eap,

W b AP being given by the formulasp a

(12.3) v.(x) = Dju(x), w.(x,t) At Djux) uCWa m a] a-[a]j 3, 3

if a is not an integer, and

(12.3') v.(x) = Du(x) , uE Wm Ii m.
3p ' _

if a is an integer, a = m.

Consider now, for tvJEw AP or for vj cEAP if a m isaninteger,tjw ia anner

the transformation T defined by the formula
a, p

(12.4) T pv.,. w(z)= (n') [CniWG (z-x)v(x)
a~p J~ Li Ai LJJ 2a 31 -- 0 Rj 

x

for a not an integer, and

m

(12.4') TmpIV.(Z) mZ &)G S ~~~~(z -x) vjtx)dx

for a integer, a -m.

If uE Wa then the reproducing formulas (5.27), (5.29) and Propositions
p

10.1 and 10.2 give

(12.5) T E U(x) u(x) almost everywhere.a,p a,p
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Using propositions I0.I, 10.Z, and 10.4 we conclude that for a not an

integer and I< p <co, Tap •vjwj• € • if vjwj cA and there is a con-

stant C independent of •vjwj] such that

IT < wj Up for I < p <oo.
€IZ.6• ,p{VjWj] ,p = •, __ = =

On the other hand if • is an integer, a = m, then from (5.7) and (6.13) it

follows that •vj} • At implies Tinp {vj • W•p and there is a constant C

independent of •vjl such that

(12.6'} ]TmpVjTmp <_ CDvjUAp fox" I < p <o0.

m

We easily verify that

(Ig.7) (EapT p)* --- Zap, Tap,
p'

in the pairing [Ap, •a' < ' > ]"

Taking into account (IZ.5), (IZ.6), (IZ.6') and (IZ.7) we get

Theorem IZ.Z. If either a is not an integer and I<_ p< co, oz" • is a_.._._n

integer and I< p< oo, then the operator Pap = E ,pT ,p isa pro•ection of

APa onto the subspace Ea, p(Wpa}. In the pairing (IZ.Z), Pap' is the adjolnt

operator of P
ap

Pairing (IZ.Z) induces a corresponding l•iring of the spaces W= and Wa
p p"

with

(IZ.9) (uv}a = <EapU, E pV>a

for ucW•, vc•.

Hence, using Theorems IZ.1 and 12.2, we get
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THEOREM1Z.3 If either a is not an integer and 1 < p < co, or a is

aan integer and 1 < p < co, then in the pairing (12.8) thsac~e W I is canoni-

cally isomorphic to the conjugate space of
p

Similar results can be obtained for spaces a,p. To obtain an iso-

morphism of p' with ( •aP) we have to choose a suitable pairing

(the isomorphism obviously depends on the pairing). The quickest way is to

use the isomorphism G-a+Vz between 1'15p and W (see theorems 11.4
p

and 11.5) and take advantage of the pairing [WV/2, W,, ( ,)] (see (12.8)
p p

and (12.9)). We obtain thus the pairing

(1a.10) [ Pa p, 01a,p' (G-a+] 2 v, G a+V~w)i/.]

and the theorem

THEOREM 12.4. For 1 : p < , 3 a'P_ is canonically isomorphic to

in pairing (12.10).

Remark. In analogy with our procedure in the case of spaces Wa it

would seem more natural to use the following construction for spaces 7 ,

Put A P = LP(Rn) x LP(RnxRn, d~t). For [v, wI E.XP define j{v,w lp -

LvPRp n•wHAP For a> 0, the space -6 aip with norm J 'apk'Lp LP(Onx Rn,ýt a,)k

k > a, is then isometrically imbedded in cP by the mapping E(l)
a,p

The spaces aep and ZP' are in natural pairing with scalar product

<fI v, w , JvwwI.> v.'dx + Sw w'd•i(x,t). We would expect now to

find suitable adjoint projections of 4P onto E(l)p (*a'P) and of AP' onto

E( 1 ) ,(•f 5 ap). These will be obtained if we get suitable reproducing for-
a.p

mulas for the p which would play in the present case the same role
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as the formulas (5.27) and (5.29) played in the case of spaces W when weP

constructed the transformations T and the projections E T . Suchap a,p ap

reproducing formulas exist; they require the use of the reproducing (or
pseudo-reproducing) kernel for the space a/i with the norm 2 ]aZk

(for Wa we used the reproducing kernel G a(x-y) of the space W• with
p

norm j 12 , this space being essentially the space Pa). The required

reproducing kernel is the inverse Fourier transform of (Zir) n/2(l+C Na)-I

wt (-I) k+l 2

with C _ G(na) A ', _k;s 1. Za. The reason why we did not use this

approach is that we would need many properties of this kernel which are not

readily available.

CHAPTER III

Perfect completion of , a,'p and "•'P.

§13. The spaces Pa-p and Bap.

In this section we prove the existence of perfect functional completions

of p and -11'b which will be denoted P',p and Ba'P. We give also a

description of the exceptional sets of these classes and differentiability prop-

erties (in the ordinary sense) of functions in these classes.

We remind the reader that -.4alp. and 16'P are formed by functions

in C0 with norms julap or Iul,,pk and their imperfect completions

ala0(rel. •o.) are Wa and 1r 5a,p respectively. We also consider the class C
p

with the norm jujj as defined in LP . We define its perfect completion,
ap w da

which will be denoted Pa'P (LP is its imperfect completion rel.61)a
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Since for a non-integer the norm in Wa is equivalent to the one in
p-, ,p

ap (see Theorem 11.4) we will have

(13.1) BGVp -ap for a non-integer.

Since for integer m and 1 < p < co the norm in W m is equivalent to

the one in LP (see Theorem 11.1) we will have
mP

(13.2) pmP = Pvm'p for integer m and 1 < p < co.

It is therefore enough to prove the existence of Bap and PalP in

order to have Po'P except when a is an integer and p = 1. We will show

that P exists, but the problem of existence of P 1 for m integer > 1

remains open.

For p = co all our incomplete spaces are proper functional spaces

and, as mentioned before, have proper functional completions denoted

pa, D< Pa. <and Ba.co contained in P Pa~ao and Ba' ° respectively.

The exceptional classes for pa'p and Ba'P will be denoted 0j°P

and a,p respectively. Since for 0 < Ia < al < o3 we have a1  a 3

(see Theorem ll.lii)) the corresponding norms, on C0 satisfy

Oululap < clua ,p,k :< c' hul3 with positive constants c, ct. Hence
a3 9p

a1p a2 p :)a al p
(13.3) P I DB DP and Ox P D4 ziP D Ota31 P

for 0 <aI <a? <a3

V 11
Since we will prove the existence of P1, the exceptional class of which

will be denoted 1, we have also

1 ,'1 all0
(13.3') P DP' DP f'D' D D

for O<al <1<aZ.
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The existence of •m,1 for m an integer > 1 not being proved as yet,

we will use an "almost perfect" completion of !%ml which we will denote

here (improperly!) lml and which will have an exceptional class given by

(13.4) On,1 = t Oa•l
a<im

This class is much smaller than Of0. The existence of a completion

of Yml rel. 01ml is assured by the fact that there exists a completion

of Il rel. Oal for every a < 1.m hence also rel. am,1 (see Prop.

6, 4 of [ ]).

We can therefore write, extending (13.3'),

a1
/. .a 2 1 a1,1 M ,1 D 0 2l1

(13.5) P DP m'DP 4XDa

for m an integer and 0 <a 1 < m < a 2 .

To simplify some statements we will use the notation 01-cp for the

exceptional class of PG'P even in cases when P coincides with PaP

or Ba'p respectively. (However, P 'P will be considered with its own

standard norm j jp . )

We turn now to the proof of existence of pGP, Ba~p and ,P1 1

We will notice first that in all our imperfect completions LP, 43a,p , and.a

Wa, if a function u(x) belongs to one of them, then so do all regularizations
p

u = u * e with some fixed regularizing function e and u convergesP P P

strongly to u in the corresponding norm. Furthermore for a function

q( C ' such that cp(x) =1 when jx] <1, q)(cx) u (x) belongs to the same
0 p

space and converges in norm to u (x) when or 0. It follows that we can
P

1. This follows from the fact that there exists a completion rel. 0t

namely Wjm , and that there exists a completion of C with the weaker

norm HIual.l rel. Ofa-ICoto.
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choose Pk 0 and ak 0 such that cp((Tkx)u (x) converge in the space
kP

to u(x). Moreover, if u(x) is continuous cp(kx)u (x) will converge
Pk

pointwise everywhere to u(x).

To abbreviate, we will denote by 9 any of the imperfect comple-

tions Lp , a'P, and Wa and by j the corresponding norm. What
a p

has been said above implies

1) A continuous function belonging to must belong to any func-

tional completion of C with norm "

We have furthermore

Z) If for each u(x)E 'I the function u'(x) = Ju(x)] also belongs to

and DuWI ! guo 1. then C' with norm D U has a perfect functional

completion rel. to an exceptional class Ot formed by sets A for which

there exists an increasing Cauchy sequence of positive continuous functions

fc such that fn(x) / co for xE A.

Proof. By Theorem 1.2 the class 4- of continuous functions be-

longing to '7 has the same functional completions as CO0 Since .ý has

the strong majoration property there exists a common perfect completion

of C and . By the theory reviewed in ýi the exceptional sets A for

this completion are those of capacity cl(A) = 0. Since the sets of the

class X are obviously exceptional for any functional completion it remains

to show that if cI(A) = 0 then AEOY- . In fact, cl(A) = 0 means that for

every k there exist sets A(k) and functions f(k)c , such thatn n

ooA(k) 0- J''
AC U ,jfk)J and nf > for xgA(k).

n=l n n=l aot n

1. This is a special form of strong rnajoration property.
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n n
The sequence of functions fn (x) Z E jfk)(x)j shows that A c 01.

i=l k=l

Theorem 13.1. The perfect completions Ba'p for G < a < 1 and PI'P

for 0 < a < 1 exist and their exceptional classes 4*ap and Of'p are

determined as in Prop. 2).

For i'P, . < 1, we can take the norm Juj 1 and the condition

in Prop. Z) is obviously satisfied since for u'(x) = Ju(x)], jAtu'(x)I

IAtu(x)l. The only remaining case of W1 is settled by noticing that if u(x)p 

u

is absolutely continuous in any variable xk on an interval, so is Ju(x)J and

Iu(x)j= jou(4)' Ij almost everywhere on the interval.

Remark 1. The exceptional class Al, was investigated by W.H.

Fleming [8 ] who proved that it is the class of sets of (n-l)-dimensional

Hausdorff measure 0.

We will need the following mean-value theorems for Bessel potentials,

similar to Frostman's theorems for Riesz potentials; the theorems were

proved in [2].

For any g(x) lo 0, geL we will consider the function

u(x) = Gag(x) =G (x-y) g(y) dy

as defined everywhere by the integral - infinite when the integral is infinite.

Mean Value Theorems. There exists a constant C depending only on

a and n such that for each sphere S(x,r), r < I ,

i) G (z-y)dy _• CGa(m-x) for every z.

S(x,r)
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ii) SE• G g(y) dy < CG g(x) for every x when gEL 1
S (x, r) and g >ý 0.

iii imr0 1 Gg(y) dy = G g(x) for every x when geLloc
JKr\ '*. " S(x,r) and g > 0.

iv) •im (e * G g)(x) = nim G g (x) = g(x) for every x when geLloc
4,0p P '%G%, x) a_

and g > 0 where e is any reguiarlzlng xunction.

Our next propostion will settle the question of existence of pap and

BC" in all the remaining cases.

3) Consider two of our imperfect completions 'and 1 such that

for some a > 0, G and C-ljlfjl, < JIGfJ] ClIf~ll for every

fe -• with a constant C > 0. Suppose further that •- satisfies the global

majoration property in the form

(,) For every fE '1 there exists fE such that f'(x) ?. Jf(x)J a.e. and

Vjf' J1 - M fJJl with M independent on f.

Then: 1. ' has property (*); *. Co in the norm J J of " has

a perfect functional completion 9 rel. Oý where 0t is the class of sets A

for which there exists a function gc •1' g > 0 with G g(x) = fo for xEA;

3o° ' is formed by all functions defined exc. Oc by the integrals

G (x-y)f(y) dy with fc7 "

Proof. 1!. For uEc take fE 1 with u = Gaf, then f by (*)

and put u' Gf'. Obviously u' a Jul and Iu'I <_ MC2 JjuJJ.
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2. We show first that Of is ca-additive. If A -U AAk. Ake Ot

and is the corresponding function, then g = Z 2 II-liJ1g k corres-

ponds to A. Next we show that every AcOt must be an exceptional set

for any completion of C0 in the norm of 4 . To this effect consider the

function ge •1, g O0, Gag(x) - o for xEA. As before, we can find

a sequence of functions (p(ukx)(eP* G g)cCO which converge in norm

of 7 to Gag. By Mean-Value Theorem iv) these functions converge point-

wise to Gag(x) = o for xEA.

To finish the proof of z2 and 3" we remark that each u(x) =5Ga(x-y)f(y)dy

in 'J" is finite exc. 0a , namely outside of the set A where SGa(x-y)f'(y)dy = co

(P corresponds to f by (*)). It follows that in each equivalence class rel. t0

of 7 there exists one and only one equivalence class of q rel. O.

Taking • with the norm of " we see that I is a functional class C 7

forming a Banach space isometrically isomorphic to I . Since CO ' 1.

it remains only to show that 7- is a functional space rel. Ct In fact, if
U tl C and Oun 0 we choose unk so that Z unk < co. If

f IE with u = G f , f' corresponds to f by (*) and g
nk 1 nk a'nk nk nk

n,' then u (x) -o 0 outside of the set A where Gag(X) = O.nk nk&

Theorem 13.2. The perfect completions pasp and Basp exist for

all a > 0 and p > 1. The exceptional classes 4M'p ".nd Z are

determined as in Prop. 3, Z by taking in case of Pa' p the isomorphism

La: L I-p and in case of Ba'p the isomorphism G .a':• 'P-

with any -y, 0 < y < a.

1. The simplest way to see this is to write for uE CO , f G -au

GZ -a(1-A)lu where A is the Laplacian, I an integer >all ; then f

is continuous and G f defines u everywhere.
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A comment should be made in case of BaP. We first use ' < 1

to be assured of the strong majoration property in S "7'P as in Prop. 2).

Then by Prop. 3) 1° we obtain the global majoration property for all ' 7)YP

Obviously, the perfect completion and its exceptional class are independent

of the choice of 7.

Remark 2. The classes Oaa,= -? - ka,2 were studied exten-

sively in [2]. Classes Ca,p for p + 2 were investigated by B. Fuglede [ 9].

For a function ue L loc the Lebesgue set is the set of points x such

that there exists a number u L(x) with

lim I Iu(yl-uL(x)l dy = 0.

S(x, r)

The complement Au of the Lebesgue set is the Lebesgue exceptional set

(L-exc. set) of u on which the functions u L(x) -- the Lebesgue function of u--

is not defined (see the corresponding developments in [3]).

With an arbitrary bounded function g vanishing outside of a compact

and satisfying Yg dx = 1 define

uglx) = lira pn g( -•u (y) dy

wherever the limit exists. The points x where the limit does not exist form

the exceptional set of ug -- the corrected function of u by g. The Lebesgue

function uL serves as a "minimal" corrected function since every ug is an

extension of u L u L(x) = u(x) a. e. and the L. exc. set A has measure 0.u

The following fact concerning the Lebesgue function uL is of impor-

tance to us (see [3]): if u(x) is represented a. e. by the integral
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'Ga(x-y)f(y) dy then the integral represents u (x) at every point x

where the integral exists and is finite.

Theorem 13.3. i) If u belongs to IP or 7Za'p then u and every

a
correction ug belong to pa,p or BaIP respectively. ii) If ufWVl, m

an integer, uL and every correction ug belong to the almost perfect com-
pletion Pm, rel. () €L ~

a <m

Proof. Part i) follows immediately from the above statement and

the representation of the functions in perfect completion, given in Prop. 3) 30.

Part ii) follows from i) since Pm'IC C pl. For = 1 it is an open

L. th<aM 1,1problem if actually u is in the perfect completion Pl, the L. exc. set

being in V 1 1

Remark 3. The corrected functions and the Lebesgue function were

introduced with the idea of recapturing the "true" values of a function which

might be "incorrectly" defined on a set of measure 0. The above theorem

shows that there is some factual background in this heuristic idea. The

corrections most often used are by spherical means (g = w•n/n for

lxi < 1, = 0 for Ixl > 1) or by regularizations (g=e).

In preceding section we considered several representation formulas

which represented functions in different imperfect completions 'ý by

integrals almost everyhwere. It is important to know if these integrals

give actually a perfect representation of the corresponding functions in the

perfect completion • . This is true in most cases and the key to this re-

sult lies in the following theorem.

Theorem 13.4. As in Prop. 3) consider two spaces =ý = Ga(- 1)

where , is LP or a+E,p andd is LP o p wt__h
- - a- ~ or wit
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0 < E < 1. Suppose further that an integral transform K from some

measure space tZ, d0(z)3 1 to jRn, dy} transforms p-ab. regu-

larly LP(Z, dw(z)) into Then for any function w(z)E LP(Z,dw(z))

the integral

(**) S S Ga(x-y)K(zy)w(z)du(z)dy

represents perfectly a function u(x)E outside of a set of the correspon-

ding class Ot

Proof. By Prop. 3) 30 it is enough to show that f(y) = IK(z,y)lw(z)jdw(z)

is in 41. When 5I LP this follows from p-ab. regularity of K. When

E- ' one has also that Jtj-E At K(z,y) is p. -ab. -r. and since

I At,y;yIK(zy)l :_ iAt,y;yK(z~y)I, the kernel It]-1 At,y;yIK(zy)] is p.-

ab. -r. too.

Remark 4. As examples of formulas to which our theorem applies

we note the reproducing formulas (5.21) (especially as rearranged in (11.12))

(5.25), (5.27), (5.29), inversion formulas (5.22) (rearranged as in (ll.l2))1

(5.26), (5.28), the operator (12.4) in the projection E T and many
a,p a,p

others. However it does not apply to (5.30) or (12.4') since these contain

some singular integral operators.

We pass now to differentiability of functions in our classes. There

1. [Z,dw(z)J may be {Rm, dzI or I Rm x Rm, dt(x,t)1 and so on with

dimension m possibly different from n.
2. This means when *• COP not only that K is p. -ab. -r. but also

that the kernel Itj-,Aty;yK(z,y) is also p. -ab. -r. from {Z, dw(z)1

to {Rn x Rn, d4(y,t)}
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are three basic questions in this connection.

I) Existence of distribution-derivatives as functions in the right

classes.

We may consider the imperfect completions • . The right class

for derivatives D. of functions in ' is the class of the same type

(L, W or 7ý ) with the same exponent p and with order a diminished,

by jiJl units.

a) Classes W' . These are the best from the present point of view.
p

Their definition implies that D.(Wa)C W'•4p for all p, 1 <- p< co and
iP p- -

all j with JJ < a.

b) Classes 7 -,a,p. Practically as good as the preceding. We take

the reproducing formula (11.2) (with a -y) and apply D. formally (whichJ

has a meaning in the sense of distributions). We pro ceed as in the proof of

Theorem 11.3 (only the kernel G is now replaced by DJGZa) and as be-

fore obtain the ab. -regularity of all relevant transformations for MjJ < a.

Hence D. 7z C a, •-j 'p for all p and IJj < a. With our- definition

of 150'P (see 911) the inclusion is true even for IjI = a but I0,'p

is a functional space only for p Z 2 and for p > 2 it contains distribu-

tions that are not functions.

c) Classes LP Everything is right for 1 < p < co. For u4 LP

we use the representation DVu(x) G' _ýj(x-y) YD3 Gb(y-z)f(z)dzdy for

f LP. The inner integral is a singular integral (see (5.7) and (6.13)). Hence

D (LP) C LP for l<p<ao, Jj a . But when p I, or p = co, the

inclUsinn is never valid. We have still obviously D (Lp) C n LPa 30Il
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A Wo for IJi < a. For jJ] = a, D.(L ) contains distributions0<C'- b] Pl~

which are not functions, whereas D.('ijC ) Lo
loc1<=,<oo c

II) Representation of derivatives by differentiation under integral

sign. Perfect representation.

If the function u is represented by one of our integral transforms,

which, by our theorems, puts it in one of the classes L, W, 12", of order a

at most, then we cannot apply D. to the kernel for Jjj> a and obtain still
3/=

a non-singular integral transform. (Sometimes, when Ijj = a we get a

singular integral transform of the type (5.7).) Therefore we will assume

jj < a. Our consideratinns are valid also for Jj I = 0.

The case 1 < p < co. The only relevant classes are LP and 1 "a@P

The transform can always be written in the form (*i,•) of Theorem 13.4 (with a

replaced by a - E in case of O ' aP). Replacing in (-*,) G (x-y) by DjGa(x-y)

(or D.G a-c incaseof Za0'p) and remembering that by (9.1), 1DG a(x-y)J <

c[G (x-y)-+-G _ji(x-y)], we obtain by the same proof as in Theorem 13.4

that the representation of D u, as function in pa-bj (or B-lJI.P.) is perfect.

The case p =1. If uc %ai the results are exactly the same as in

the preceding case.

If uE W a , a an integer, we do not know if the representation is of

the kind treated in Theorem 13.4. However, we know that D.uE W1t'b and

the representation is almost perfect, i.e. valid outside of a set in nl X3 l.

If ucL1 we know that in general D u 4L 1  However, if the repre-a s ea-L w

sentation is of the type of Theorem 13.4 (e. g. u G f,~ f E L), we get, in
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view of inequality (9.1) that D.u is defined by the integral outside of a

set 4E 0 -a-]l.

The case p = co. In this case all functions in our classes and all

their derivatives of order <a are continuous and bounded.

The derivatives are represented by the corresponding integrals everywhere.

III) Pointwise differentiation. We will introduce a notion of pointwise

derivative, somewhat more restrictive than usual. We will say that u de-

fined outside of some exceptional set A has a pointwise derivative in some

direction, say the direction of x - axis, at the point y if in some interval

Yn-a < Xn < yn + a, a > 0, u(y',xn) is defined and absolutely continuous

and D U(Y) = limr A . u(y',y ) exists and is finite. If ueLloI and
Xn h--0 nn

the so defined D exists a. e. and D UE L then D u is the distributionxn x loc xn n n

"derivative of u.

By repeating the operation we obtain any higher order pointwise deri-

vative D.u. It is clear that it is necessary to define u much more precise-

ly than exc. Ot0 to have the derivatives Dju exist in pointwise sense.

We will consider the perfect completions pa, p and Bap and

prove that for u in any one of them the pointwise derivatives D.u exist for

IJj < a outside of a set of the corresponding class aa-Il'p, p-WP or

;V-DI'P and belong to PC'bj',P, P•a-iJp and Ba-bi'p respectively. The

only exceptions will be p = 1 for all classes and p = co for Pac.

We prove first a few inclusions

(13.6) For 0 <a' < a and > 1> 1 a-.a. P.PC Paq, a"PC pap'9q
- p q p n

In fact, by Young's inequality (see [Z], 10:, Prop. 1)) we have G a-a'
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if fELp, hence G f = G , (G f), Pa°q. The inclusion between excep-
a a a-a'

tional classes follows from the one between the spaces.

(13.7) For p < q, Ma, P .

It is enough to prove this for bounded sets. Suppose AC S(0, R) and

AE toProp.3)20for the isomorphism G a L- L3 that
qa

AC[x:G f(x) = oo] for some fEL , f > 0. Let X(x) be the characteristic
a

function of S(0,R). Put f, = Xf, fZ = (l-X)f. Then Gaf 2 is a regular analytic

function in S(0,R), and hence AC [x: Gfl(x) = ao]. Since fE L P, (13.7)

follows.

Lemma. 10. Let Ac ta.'p (or AE ,a.P), a > 1. The set of straight

lines parallel to the Xn-axis and meeting A forms a set E Ma-lP (or E,6a-l P)

2. Let Ac Ot1 p. The set of straight lines parallel to the xn-axis and

meeting A forms a set of Lebesgue measure 0.

Proof. 10. By proposition 3) 20 there exists a function q >_ 0 such

that A = [x: G cp(x) = co] with cpcLp or A = [x:G _cpy(x) = oo] witha a-

amin[r ,- and cpcE tb'P. Put =pl(X , n = T(xn+T)dT for

a positive integer N. We have

{ cPlJL <= ZNI P qLJ jo &tlLP < 1 N1t cp"J

Therefore TE c Lp or Thl Elp respectively. Put A N)= [x:G cq)l(x) = ao]

and A(N)= [x:aG acp(x) = co] (or A(N) = [x:G _cpl(x) = co] and A -(N)

[x: G _l (x) = ool ). Then A(N) cja'p and A(N) E a-1,p ( or -aip
a 1p(x A1 c 1 n 2 E4 ~(r~

and Aa-lp respectively). Consider a point y A .j A 1N) ý.. A(N). By (9.1) we

have j- .- G (x-y)l < c[G (x-y) + Ga-(X-y)] hence for any h, JhI < N,

n
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h

IP(Y' ,Yn÷h)-I cP(Y'Yn)- G + ( n T) q)(x',x)dTdx

R 0
h h

<i C[ G (y'-',~yn~ ' S- c(PX',X + )drdx + SG %_&-X)5 $PX',XrT)d.Tdx]

0 R 0

< c[G (PI(y) + G l1 cpl(y)] < co

(or similarly IGa_ EP(yyn+h)-G _.cp(y)l S c[GEcliy)+G _lcl(y)] co).

It follows that for y outside of the set A . U ( ) N) a-lp

1

(or p alp) the whole straight line parallel to xn -axis and passing through

y lies outside of A.

20. By Prop. Z) there exists an increasing sequence of continuous

positive functions uk forming a Cauchy sequence in W such that AC
p

[x: uk(x)/oo]. Since the uk are continuous we can find a set A1 of measure

0 formed by straight lines parallel to xn -axis such that

h
(x',x+h) -Uk(Xx+ T)d7- for all k, h and x outside of A1 .Uk Xn~h -k(X) = Fx uk x ,

0 n

If there was a set of positive measure of straight lines parallel to

xn -axis and meeting A there would be also a set of positive measure of

such lines on which Uk(X'Xn+1lIP dT < Mp for some constant M

-Z n

and all k (since F-) uk is a Cauchy sequence in LP). Also in this last
n

,set there would have to be a point y where Iuk(y)l < N for all k. On the

corresponding line we would have juk(y',Yn+h)j < N + Mjhj and the

line would not meet A.

Theorem 13.5. le. The case I < p < co. If uc PaP (or BUDP) and
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ijj < a the pointwise derivative D.u exists exc. °-Ijl'p (or/'bl'P)and be-

longs to pa-blp (or Ba-bl'P); if bj = a, D u exists exc. CO and E LP for

uE P"P = PaP. 20. The case p = 1. If uc ,l, P ,P or Bal, and _ ii < a,

D.u exists exc. nl 011 and belongs to n _p0,l; if iii = a =1

13<a-ii 1<a-ijI
and u'E P', D.u exists exc.O 0 and belongs to L 3'. The case p = oo.

Ifu belongs to pa, , Pa, , or B a,° and b[ < a, Dju exists everywhere

and belongs to Ba-Ilw, P-j], or Ba-buI° respectively; if [= a, and

ucPa'oo, then Dju exists exc. a 0 and belongs to L°.

Proof. 1. Clearly it is enough to consider the case [j] =1. Suppose

first 1 < a. We confine ourselves to the case ueB 'p (the case ucPa'p

is slightly simpler, both are similar to the case p = 2 treated in [2]).

Since u(x) =G f(x) exc. e-a"p with Z2 = min(a-1, 1) and fe W C we can

take the set AE€A '2p of straight lines parallel to xn -axis such that

u(x) = Gf(x) outside of A as in the above Lemma, then we write

h
~(u(x',xn+h)-u(x',Xn)) S S n~o(U, +h -u-x~ 1 G(x'-y',xn-yn)f(y',Yn+ T)d~dy.

n0 n

The integrand is majorated by
1 [G (x'-y', xn-yn) + G_ x-y',Xn-Yn)]f(Y'yn +T).

c Ti +' n ~ n

Introducing h

T(y', yn) = sup5 lf(y',yn+T)IdT
0

we check immediately that h

lAtT(y'yn)J < sup' S J'Atf(y',ynT)J dt

0

Applying Hardy-Littlewood inequality we get T T' W€ . hence outside
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the set where GE f(x) + CS _f (x) =o and set A -- which form a set

in Yj'- -. - .u(x) exists and is given by (-s-G) * f which is a
n n

a-i,pperfect representation of a function in B

If a = 1, we use a sequence of continuous functions Ne C' conver-1,lp
ging in p1 DP to u exc. Ot?. For almost all lines • pk converges in

n

norm. If we assume that EI-?k - k+lIl,p < co the convergence is domina-

ted by E- nk(x) - - p+(x)j + - l(X) cLp, hence almost everywhere
n n n

lim 1(u(x',X-h) - u(x',xn)) lir lra E(cpk(x'xn+h) -Ik(x',xnl)) which
h=O n k=oo h=O

finishes this part of the proof.

20. We use the preceding part and the inclusions (13.6) and (13.7) to

show that D.u for bLi < a exists exc. n O/-' and is represented by any
0 a-IiI

of the relevant representation formulas differentiated under the sign of in-

tegral; but such a differentiated formula in all cases represents a function

in n PO',. For jjj = a =1 and uE PI i the proof is as in case 10.

30. This is obvious except when ai = a and uE sa,oo when we proceed

as in 1.

§14. Restrictions and extensions of functions of pa.P , Bap'.

We shall apply here the results of b1O and ý13 to characterize the

restrictions of functions of Ba'p and pap to hyperplanes and extensions

of functions of Baip from hyperplanes to the whole space. Results pre-

sented here were obtained in a somehow less precise form by Besov

(5] (for BaP) and Stein [18] (for Pa'P). The corresponding results for

P 'P can be obtained from the ones described here, in view of its inclusion

relations with B a'P and Pa.P (§13).

We begin with the characterization of restrictions of functions of Baap.
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By Theorem 13.2, if uEBaIp and , is a fixed number, 0 < -y < min(l,a)"

-then u - G (x-y)f(y)dy exc. a, with f ( W) and thenorms

'Y P

Ifi and !utapk (k > a) are equivalent. For almost all z we have

f (z) = * ft(z) + 5 yzy w(y,t) d4. (y,t)
R nR n tF~

where w(y,t) = It1AAt f(y) , and consequently,

(14.1) u(x) = SnG +(x-y) f(y) dy + n t;yG Y(x-y)

the latter formula being valid in view of Theorem 13.4 exc. ds'p. Fo::mula

14.1 is suitable for defining restrictions of u to hyperplanes. As before,

for n'-integer, 0 < n' < n, x' will denote the projection of the point x onto

the hyperplane xn+ =... =x =0, n" =n-n'. Assume that a > 2Ln p

1 < p < c and define the restriction of u to R

A G +(X-y)
(14.2) u'(x') •Ga+ (x'-y) f(y)dy + At; y. w(y,t)dp. (y,t)

with f and w as in formula (14.1).

Hence u' is the sum of results of integral transformations of Props.

10.1 and 10.Z applied to fELP(lRn) and wELP[RnxRn, dLy (y,t)] respectively.

By Props. 10.1, 10.Z i), and Remark 2 of ý10, we cnnclude that u' is defined

a. e. on Rn' , belongs to LP(Rn') and ju ILp(Rn) !- c IflI p with a constant

c independent of f. Similarly, the difference quotient w'(t',x) =
n - -- a k

t,1  - kt u'(x'), k' > a -- is the sum of results of the transforma-

tions of Props. 10.2 and 10.4 applied to f and w respectively, and by

1. We could put -, = 2 min(l,a).
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Props. 10.2 i), 10.4, and Remark 2 of §10, it belongs to LP(RnxRnL`(x-,tj)]

and jwj < c If with some constant independent of f. We con-

clude that u' € ./•n/pp and

(14.3) lull Cluj
a-n'•/p,p,k' a,p,k

with k > a and some constant c independent of u.

It remains to prove that u'EBO-n"P'Pp(Rn'). In fact, u(x) is a pointwise

limit outside of Ae/jcp of a Cauchy sequence of continuous functions

ukb• a P(Rn). Hence their restrictions uk form by (14.3) a Cauchy sequence

of continuous functions in • a-nlYp'p(Rn') converging pointwise to u' outside

of A K Rn., We must now prove that Afl RnE€can/pp(In). By Prop. 3),20

there exists obviously a Cauchy sequence of continuous functions vkc ri O P(Rn)

such that AC[x: lim vk(x) = co]. Their restrictions form a Cauchy sequence"k 
n I

of continuous functions v'kE 7. '-n•Yp'P(Rn) and on Afl KR, v'k(x') oD

hence A ) RnC ,p-n"/PIP(Rn'). We have proved thus

Theorem 14.1. If uEBalP(Rn), a > I-, 1 < p < co, then the pointwise
p

restriction u of u to R' belongs to B 'n'•P'P(Rn') and the restriction

mapping is linear and bounded.

We shall prove now that this restriction mapping is a mapping onto.

Let u'(x )EBO'P(Rn ). Similarly as in (14.1) we can write with some
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11
y, 0 < -y <rain(1, and an f EW'Y(Rn (with the norms iu'lP.kl and

I f'] 'Y,p equivalent),

b . dn') x, -y')

(14.4) u,(x) (xx•') +0•5y 5.+'V w'(y'.V)dp Wi(y-t')

Rexe. 0'ý in Rn)

where w'(y', t') -ItI'V-Atif(yt) . Observe, that by the definition of the

kernel G(n ) we have

(14.5) (n' ) =,G)x IJ( 4 n).nGZ i(-

Ga x) a r a a()

= c n,•,Ga+n"¢(JX'i•)

where Gn denotes the usual n-dimensional kernel.

Define now the extension u of the function u' by the formula

(14.6) u(x)- Cn,,,+ [Y Gn,+,+,Y(x-y')f'(y')dy'

Sn l:n8 At' G ,+,+,,_(x-y')+' ; h .p w'(y',t')dj4 Ity',t)

Clearly u is a C function outside the hyperplane le' and u(x') =

u'(x') exc. 60P (in Rn).

nit
Let a + 3 + -- and k be an integer, k > a. Applying Props. 10.1

adjoint, 10.Z i) adjoint, and Remark 2 of §10, we verify that uE LP(Rn) and

Dully < clu '",p,k' (k'> 0), with some constant c independent of u'.

Similarly, by Prop. 10.3 and 10.4 adjoint, the difference quotient

ta tU(Xf w(x,t) is in LP(RnxR,dki(x,t)] and DWIIL t clujI0,p,k,
LP(dpt)

with c independent of u'. Since (14.6) is of type (**) of Theor. 13.4, this proves

11. We could put y = -• rnin(1,3).
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Theorem 14.2. If u' EB"'(R0), • >0, 1 _p <o, then u' can be

canonically extended by (14.6)to a function uf B+rn/P"P(Rll), the extension

mapping being linear and bounded.

We state now the following theorem concerning spaces P amp:

Theorem 14.3. i) If ucPatp, a >-2f , 1 < p =< c, then the restriction
p

u' of u to Rne belongs to B an'/P (Rn), the restriction mapping being

linear and bounded.

ii) If uWEBO°P(Rn ), > 0, 1 _p <co, then u' canbe

extended to a function uc p•+n'p, the extension mapping being linear and

bounded.

Proof. Let uePa'P(Rn), then by Theorem 13.2, u(x) = (x-yX(y)dy

exc. 0 1a'P, fc LP.

Define .
U '(x - ! G (x'-y)f(y) dy .

Rn

By Prop. 10.1, u' is defined a.e. on 0R', belongs to LP(Fe') and j]u'L <

cDfII with a constant c independent of f. On the other hand, by Prop.
nI

10.2 ii) for k'> a- the difference quotient
nit k'ak: u, (xt'& G (x' -y),

w'(x',t') = JtoJ] t() Rna a y dy

i t q af U i t h s o m

belongs to LP[Rn'x e,dp'(x',t')] and Iw'l c • I, f with some

constant c independent of f. This proves that u'-E -•n/pp(Rne) To

show that u" is actually in Ba'n/lp'P(Rn') we proceed as in the last part of

Theorem 14.1.
ii) Let u'cBP'P(Rn') and let u be given by (14.6). Then u-G f

i+n'Vp

with
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•rc
f (x) = n in G t~~p(x-y') f'(y') dy'

R

Sn, Rn itYw' (yt')dl' (YIt')]

R R ItJ

and by Prop. 10.1 adjoint, 10.2 ii) adjoint, and Remark 2 of §10, fELp and

fJJ fp< cjf'j], . In view of the definition of f' (as in (14.6)) this completes

the proof.

We mention finally the case of the spaces Pm,1 m-integer, about

which no information can be obtained from the theorems proved above. E.

n n-IGagliardo proved (c. f. [11]) that restrictions of functions of PI(Rn) to Rn-

are in LI(Rn-). His reasoning can be extended (by completion of CG) to

prove that restrictions of functions of P l(R) to Rare in P (6),

V10l 1rn-n" > 0, P' = L
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